18.定義:若平面點集A中的任一個點(x0,y0),總存在正實數(shù)r,使得集合(x,y)|$\sqrt{{{(x-{x_0})}^2}+{{(y-{y_0})}^2}}<r\}$⊆A,則稱A為一個開集.給出下列集合:
①{(x,y)|x2+y2=1};     ②{(x,y)|x+y+2>0};
③{(x,y)||x+y|≤6};      ④$\{(x,y)|0<{x^2}+{(y-\sqrt{2})^2}<1\}$.
其中不是開集的是①③.(請寫出所有符合條件的序號)

分析 根據(jù)新定義進行計算后判斷,弄清開集的定義是解決本題的關鍵.即所選的集合需要滿足存在以該集合內任意點為圓心,任意正實數(shù)為半徑的圓內部分均在該集合內.初步確定該集合不含邊界

解答 解:對于①:A={(x,y)|x2+y2=1}表示以原點為圓心,1為半徑的圓,則在該圓上任意取點(x0,y0),以任意正實數(shù)r為半徑的圓面,均不滿足B={(x,y)|$\sqrt{(x-{x}_{0})^{2}+(y-{y}_{0})^{2}}$<r}⊆A,
故①不是開集.
對于②:A={(x,y)|x+y+2>0}平面點集A中的任一點(x0,y0),則該點到直線的距離為d,取r=d,則滿足B={(x,y)|$\sqrt{(x-{x}_{0})^{2}+(y-{y}_{0})^{2}}$<r}⊆A,
故②是開集;
對于③:A={(x,y)||x+y|≤6},在曲線|x+y|=6任意取點(x0,y0),以任意正實數(shù)r為半徑的圓面,均不滿足B={(x,y)|$\sqrt{(x-{x}_{0})^{2}+(y-{y}_{0})^{2}}$<r}⊆A,
故該集合不是開集;
 對于④:A=$\{(x,y)|0<{x^2}+{(y-\sqrt{2})^2}<1\}$表示以點(0,$\sqrt{2}$)為圓心,1為半徑除去圓心和圓周的圓面,在該平面點集A中的任一點(x0,y0),則該點到圓周上的點的最短距離為d,取r=d,則滿足B={(x,y)|$\sqrt{(x-{x}_{0})^{2}+(y-{y}_{0})^{2}}$<r}⊆A,
故該集合是開集;
故答案為:①③.

點評 本題屬于集合的新定義型問題,考查學生即時掌握信息,解決問題的能力.正確理解好集的定義是解決本題的關鍵

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.《萊茵德紙草書》Rhind Papyrus是世界上最古老的數(shù)學著作之一,書中有一道這樣的題目:把10磅面包分給5個人,使每人所得成等差數(shù)列,且使較大的三份之和的$\frac{1}{7}$是較小的兩份之和,則最小1份為$\frac{1}{6}$磅.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽馬P-ABCD中,側棱PD⊥底面ABCD,且PD=CD,點E是PC的中點,連接DE,BD,BE.
(1)證明:DE⊥平面PBC.
(2)試判斷四面體EBCD是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,請說明理由;
(3)記陽馬P-ABCD的體積為V1,四面體EBCD的體積為V2,求$\frac{{V}_{1}}{{V}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列說法正確的是( 。
A.若命題p,¬q都是真命題,則命題“p∧q”為真命題
B.命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0,則x≠0或y≠0”
C.“x=-1”是“x2-5x-6=0”的必要不充分條件
D.命題“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$≤0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知|$\overrightarrow a|$=2,|$\overrightarrow b$|=1,$(\overrightarrow a-\overrightarrow b)•\overrightarrow b=0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=lnx+2x-6的零點在區(qū)間(  )
A.(-1,0)B.(2,3)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,是某班50名學生身高的頻率分布直方圖,那么身高在區(qū)間[150,170)內的學生人數(shù)為( 。
A.16B.20C.22D.26

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若f(x)是偶函數(shù),它在[0,+∞)上是減函數(shù),且f(lgx)>f(1),則x的取值范圍是(  )
A.($\frac{1}{10}$,1)B.(0,$\frac{1}{10}$)∪(1,+∞)C.(0,1)∪(10,+∞)D.($\frac{1}{10}$,10)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖在四棱錐P-ABCD中,底面ABCD是等腰梯形,且PA⊥平面ABCD,AB=AD=CD=1,∠BAD=120°,PA=$\sqrt{3}$平行四邊形T,Q,M,N的四個頂點分別在棱PC、PA、AB、BC的中點.
(1)求證:四邊形TQMN是矩形;
(2)求四棱錐C-TQMN的體積.

查看答案和解析>>

同步練習冊答案