分析 (1)求出f(x)的導(dǎo)數(shù),可得切線的斜率,由兩直線垂直的條件:斜率之積為-1,解方程可得a;
(2)由題意可得a=x-1-lnx,x>0,設(shè)h(x)=x-1-lnx,求出導(dǎo)數(shù),單調(diào)區(qū)間和極值、最值,討論a的范圍,即可得到解的個(gè)數(shù);
(3)由題意可得即有$\frac{g(s)-s-[g(t)-t]}{s-t}$<0,即證g(x)-x在(0,2)為減函數(shù).可令k(x)=g(x)-x=-2(1+lnx)+x-2a,0<x<2,求出導(dǎo)數(shù),判斷單調(diào)性即可得證.
解答 解:(1)函數(shù)f(x)=-2xlnx+x2-2ax+a2
的導(dǎo)數(shù)為f′(x)=-2(1+lnx)+2x-2a,
可得曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為-2+2-2a=-2a,
切線垂直于直線x+y+3=0,可得-2a=1,解得a=-$\frac{1}{2}$;
(2)g(x)=f′(x)=-2(1+lnx)+2x-2a=0,
即為a=x-1-lnx,x>0,
設(shè)h(x)=x-1-lnx,h′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,
當(dāng)x>1時(shí),h′(x)>0,h(x)遞增;
當(dāng)0<x<1時(shí),h′(x)<0,h(x)遞減.
可得h(x)在x=1處取得極小值,也為最小值0,
則當(dāng)a=0時(shí),g(x)=0有一解;
當(dāng)a<0時(shí),g(x)=0無解;
當(dāng)a>0時(shí),g(x)=0有兩解;
(3)證明:對任意的0<s<t<2,恒有$\frac{g(s)-g(t)}{s-t}$<1,
即有$\frac{g(s)-s-[g(t)-t]}{s-t}$<0,
即證g(x)-x在(0,2)為減函數(shù).
可令k(x)=g(x)-x=-2(1+lnx)+x-2a,0<x<2,
k′(x)=-2•$\frac{1}{x}$+1=$\frac{x-2}{x}$,
由0<x<2可得k′(x)<0,
可得k(x)=g(x)-x在(0,2)遞減,
故對任意的0<s<t<2,恒有$\frac{g(s)-g(t)}{s-t}$<1.
點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查分類討論思想方法和構(gòu)造法的運(yùn)用,同時(shí)考查化簡整理的運(yùn)算能力,屬于中檔題,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{3}$) | B. | (0,54-24$\sqrt{5}$] | C. | (0,$\frac{1}{2}$) | D. | (0,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}+1$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{5}+1}}{2}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | a<c<b | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com