在△ABC中,若lgsinA-lgcosB-lgsinC=lg2,則△ABC的形狀是
 
考點(diǎn):正弦定理,對(duì)數(shù)的運(yùn)算性質(zhì)
專題:解三角形
分析:利用對(duì)數(shù)函數(shù)的運(yùn)算法則,對(duì)原式整理;利用兩角和公式進(jìn)一步化簡(jiǎn)求得sinBcosC=cosBsinC,進(jìn)而利用同角三角函數(shù)關(guān)系推斷出tanB=tanC,得出B=C的結(jié)論.
解答: 解:∵lgsinA-lgcosB-lgsinC=lg
sinA
cosB•sinC
=lg2,
sinA
cosB•sinC
=2,即sinA=2cosBsinC,
∵sinA=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC+cosBsinC=2cosBsinC,
∴sinBcosC=cosBsinC
sinB
cosB
=
sinC
cosC
,即tanB=tanC,
∴B=C,
∴△ABC的形狀是等腰三角形.
故答案為:等腰三角形.
點(diǎn)評(píng):本題主要考查了正弦定理的應(yīng)用,三角函數(shù)的恒等變換等知識(shí).在解三角形中正弦定理常用來(lái)解決求值,范圍和判斷三角形的形狀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把函數(shù)f(x)=2sin(2x+φ)(0<φ<π)的圖象向左平移
π
6
個(gè)單位后得到偶函數(shù)g(x)的圖象.
(Ⅰ)求φ的值;  
(Ⅱ)求函數(shù)h(x)=f(x-
π
12
)-g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=-
x
x2+2x+2
,x∈[1,3]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a>0,命題p:?x∈R,|sinx|>a有解; 命題q:?x∈[
π
4
4
],sin2x+asinx-1≥0.
(1)寫出?q;        
(2)若p且q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種樹苗栽種時(shí)高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足f(n)=
9A
a+btn
,其中t=2-
2
3
,a,b為常數(shù),n∈N,f(0)=A.已知栽種3年后該樹木的高度為栽種時(shí)高度的3倍.
(1)栽種多少年后,該樹木的高度是栽種時(shí)高度的8倍;
(2)該樹木在栽種后哪一年的增長(zhǎng)高度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人參加一檔綜藝節(jié)目,需依次闖關(guān)回答8道題,若回答正確,就獲得一定的“家庭夢(mèng)想基金”且可選擇拿著“家庭夢(mèng)想基金”離開或繼續(xù)答題(假設(shè)離開和繼續(xù)答題的可能性相等);若回答錯(cuò)誤,則此前積累的基金清零,且他離開此節(jié)目.按規(guī)定,他有一次求助親友團(tuán)的機(jī)會(huì),若回答正確,也被視為答案正確,否則視為錯(cuò)誤.8道題目隨機(jī)排列,且他能答出其中5題,且另3題中,有2題親友團(tuán)能答對(duì),則他能獲得第5關(guān)對(duì)應(yīng)的“家庭夢(mèng)想基金”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2|sinx|+3|cosx|的值域?yàn)?div id="gk7aygz" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=-
4
5
,α是第四象限的角,則cos2
α
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式cos2x>
3
2
的解集:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案