已知F1,F(xiàn)2為橢圓=1(a>b>0)的左、右焦點,若橢圓上存在一點P,使PF1⊥PF2,求橢圓離心率的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1,F(xiàn)
2為橢圓
+=1(a>b>0)的兩個焦點,過F
2作橢圓的弦AB,若△AF
1B的周長為16,橢圓的離心率
e=,則橢圓的方程為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1,F(xiàn)
2為橢圓E的兩個左右焦點,拋物線C以F
1為頂點,F(xiàn)
2為焦點,設(shè)P為橢圓與拋物線的一個交點,如果橢圓離心率e滿足|PF
1|=e|PF
2|,則e的值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1、F
2為橢圓
+=1的兩個焦點,點P是橢圓上的一個動點,則|PF
1|•|PF
2|的最小值是
9
9
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1、F
2為橢圓
+=1(a>b>0)的焦點,B為橢圓短軸的一個端點,
•≥
2則橢圓的離心率的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2009•荊州模擬)已知F
1、F
2為橢圓C:
+=1的兩個焦點,P為橢圓上的動點,則△F
1PF
2面積的最大值為2,則橢圓的離心率e為( )
查看答案和解析>>