已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)證明:.
(1)上單調(diào)遞減,在上單調(diào)遞增;(2)詳見(jiàn)解析

試題分析:(1)對(duì)于確定函數(shù)的單調(diào)性,可利用的解集和定義域求交集,得遞增區(qū)間;的解集和定義域求交集,得遞減區(qū)間,如果的解集不易解出來(lái),可采取間接判斷導(dǎo)函數(shù)符號(hào)的辦法,該題,無(wú)法解不等式,可設(shè)
,再求導(dǎo)>0,故遞增,又發(fā)現(xiàn)特殊值,所以小于0,在大于0,單調(diào)性可判斷;(2)要證明,可證明,由(1)知,函數(shù)遞減,遞增,而無(wú)意義,所以可考慮對(duì)不等式等價(jià)變形,從而,寫成積的形式,判斷每個(gè)因式的符號(hào)即可(注:這樣將.分開另一個(gè)目的是為了便于求導(dǎo)).
試題解析:(1),設(shè),則,上單調(diào)遞增,當(dāng)時(shí), ,從而單調(diào)遞減;當(dāng)時(shí), ,從而單調(diào)遞增,因此,上單調(diào)遞減,在上單調(diào)遞增;
(2)證明:原不等式就是,即,令,上單調(diào)遞增,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng)時(shí),.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),是大于零的常數(shù).
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)若函數(shù)在區(qū)間上為單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:曲線上存在一點(diǎn),使得曲線上總有兩點(diǎn),且成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1設(shè)
(1)當(dāng)時(shí),求f(x)的單調(diào)區(qū)間;
(2)求f(x)的零點(diǎn)個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若有兩個(gè)相異零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn),直線與函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),記的面積為.

(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù) 
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令)其圖象上任意一點(diǎn)處切線的斜率 恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè) 
(1)如果處取得最小值,求的解析式;
(2)如果,的單調(diào)遞減區(qū)間的長(zhǎng)度是正整數(shù),試求的值.(注:區(qū)間的長(zhǎng)度為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列圖象中,有一個(gè)是函數(shù)的導(dǎo)數(shù)的圖象,則的值為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),則的極大值為       .

查看答案和解析>>

同步練習(xí)冊(cè)答案