【題目】已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4,半徑小于5.
(Ⅰ)求直線PQ與圓C的方程;
(Ⅱ)若直線l∥PQ,直線l與圓C交于點A,B且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程.
【答案】(1)x+y-2=0,(x-1)2+y2=13;(2)x+y-4=0或x+y+3=0。
【解析】
試題分析:(Ⅰ)直線PQ的方程為:x+y-2=0,
設(shè)圓心C(a,b)半徑為r,
由于線段PQ的垂直平分線的方程是y-=x-,即y=x-1,
所以b=a-1. ①
又由在y軸上截得的線段長為4,知r2=12+a2,
可得(a+1)2+(b-3)2=12+a2, ②
由①②得: a=1,b=0或a=5,b=4.
當a=1,b=0時,r2=13滿足題意,
當a=5,b=4時,r2=37不滿足題意,
故圓C的方程為(x-1)2+y2=13.
(Ⅱ)設(shè)直線l的方程為y=-x+m,A(x1,m-x1),B(x2,m-x2),
由題意可知OA⊥OB,即=0,
∴x1x2+(m-x1)(m-x2)=0, 化簡得2x1x2-m(x1+x2)+m2=0. ③
由得2x2-2(m+1)x+m2-12=0,
∴x1+x2=m+1,x1x2=.
代入③式,得m2-m·(1+m)+m2-12=0,
∴m=4或m=-3,經(jīng)檢驗都滿足判別式Δ>0,
∴y=-x+4或y=-x-3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為菱形, , 底面, 為直線上一動點.
(Ⅰ)求證: ;
(Ⅱ)若, 分別為線段, 的中點,求證: 平面;
(Ⅲ)直線上是否存在點,使得平面平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a和b是計算機在區(qū)間(0,2)上產(chǎn)生的均勻隨機數(shù),則一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標方程是ρ= ,以極點為原點,極軸為x軸正方向建立直角坐標系,點M(﹣1,0),直線l與曲線C交于A、B兩點.
(Ⅰ)寫出直線l的極坐標方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長度之積MAMB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),直線平行OM,且與橢圓交于A、B兩個不同的點。
(Ⅰ)求橢圓方程;
(Ⅱ)若AOB為鈍角,求直線在軸上的截距的取值范圍;
(Ⅲ)求證直線MA、MB與軸圍成的三角形總是等腰三角形。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期為π,給出下列四個命題:
①f(x)的最大值為3;
②將f(x)的圖象向左平移 后所得的函數(shù)是偶函數(shù);
③f(x)在區(qū)間[﹣ , ]上單調(diào)遞增;
④f(x)的圖象關(guān)于直線x= 對稱.
其中正確說法的序號是( )
A.②③
B.①④
C.①②④
D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:
(1)如果不超過200元,則不給予優(yōu)惠;
(2)如果超過200元但不超過500元,則按標價給予9折優(yōu)惠;
(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.
某人單獨購買A,B商品分別付款168元和423元,假設(shè)他一次性購買A,B兩件商品,則應(yīng)付款是
A. 413.7元 B. 513.7元 C. 546.6元 D. 548.7元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com