【題目】如圖,在四棱錐中,四邊形為菱形, , 底面, 為直線上一動(dòng)點(diǎn).

Ⅰ)求證: ;

Ⅱ)若, 分別為線段, 的中點(diǎn),求證: 平面;

Ⅲ)直線上是否存在點(diǎn),使得平面平面?若存在,求出的值;若不存在,請(qǐng)說明理由.

【答案】(Ⅰ)證明見解析;(Ⅱ)證明見解析;(Ⅲ)答案見解析.

【解析】試題分析

(Ⅰ) 連,由菱形可得.又由平面,可得從而可得平面,可證得. (Ⅱ) 取的中點(diǎn),, ,由題意可得 ,故四邊形為平行四邊形,所以,由線面平行的判定定理可得平面. (Ⅲ)先假設(shè)存在滿足條件的點(diǎn).再進(jìn)行推理,即過的延長(zhǎng)線于,連可證得中, , ,所以,從而

試題解析

Ⅰ)證明:連結(jié),

因?yàn)樗倪呅?/span>為菱形,

所以

因?yàn)?/span>平面, 平面

所以

,

所以平面

平面,

所以

Ⅱ)證明:取的中點(diǎn),,

因?yàn)?/span>為線段中點(diǎn),

所以,

因?yàn)樗倪呅?/span>為菱形, 為線段的中點(diǎn),

所以,

所以,

故四邊形為平行四邊形,

所以

又因?yàn)?/span>平面 平面,

所以平面

Ⅲ)解:直線上存在點(diǎn),使得平面平面,且.理由如下:

如圖,過的延長(zhǎng)線于,連

因?yàn)榱庑?/span>,

所以

因?yàn)?/span>底面 平面,

所以

所以平面

又因?yàn)?/span>平面,

故平面平面

因?yàn)樵?/span>中, , ,

所以

故直線上存在點(diǎn),使得平面平面,且

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓 ,點(diǎn).

(1)求經(jīng)過點(diǎn)且與圓相切的直線的方程;

(2)過點(diǎn)的直線與圓相交于、兩點(diǎn), 為線段的中點(diǎn),求線段長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)在拋物線上.

(1)寫出該拋物線的標(biāo)準(zhǔn)方程及其準(zhǔn)線方程;

(2)過點(diǎn)作兩條傾斜角互補(bǔ)的直線與拋物線分別交于不同的兩點(diǎn),求證:直線的斜率是一個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

①對(duì)立事件一定是互斥事件;②若A,B為兩個(gè)隨機(jī)事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對(duì)立事件.

其中正確命題的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=2,cosB= ,點(diǎn)D在線段BC上.

(1)若∠ADC= π,求AD的長(zhǎng);
(2)若BD=2DC,△ACD的面積為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:

①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適;

②用相關(guān)指數(shù)R2來刻畫回歸的效果,R2值越大,說明模型的擬合效果越好;

③比較兩個(gè)模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果越好.

④在研究氣溫和熱茶銷售杯數(shù)的關(guān)系時(shí),若求得相關(guān)指數(shù)R2≈0.85,則表明氣溫解釋了15%的熱茶銷售杯數(shù)變化.

其中正確命題的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:max{a,b}= ,若實(shí)數(shù)x,y滿足:|x|≤3,|y|≤3,﹣4x≤y≤ x,則max{|3x﹣y|,x+2y}的取值范圍是(
A.[ ,7]
B.[0,12]
C.[3, ]
D.[0,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的右頂點(diǎn)與上頂點(diǎn)分別為,橢圓的離心率為,且過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,若直線與該橢圓交于兩點(diǎn),直線的斜率互為相反數(shù).

①求證:直線的斜率為定值;

②若點(diǎn)在第一象限,設(shè)的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過P(4,-2),Q(1,3)兩點(diǎn),且在y軸上截得的線段長(zhǎng)為4,半徑小于5.

)求直線PQ與圓C的方程;

)若直線l∥PQ,直線l與圓C交于點(diǎn)A,B且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案