【題目】如圖,已知圓 ,點.

(1)求經(jīng)過點且與圓相切的直線的方程;

(2)過點的直線與圓相交于、兩點, 為線段的中點,求線段長度的取值范圍.

【答案】(1);(2).

【解析】試題分析:(1)設(shè)直線方程點斜式,再根據(jù)圓心到直線距離等于半徑求斜率;最后驗證斜率不存在情況是否滿足題意(2)先求點的軌跡:為圓,再根據(jù)點到圓上點距離關(guān)系確定最值

試題解析:(1)當(dāng)過點直線的斜率不存在時,其方程為,滿足條件

當(dāng)切線的斜率存在時,設(shè) ,即

圓心到切線的距離等于半徑3,

,解得

切線方程為,即

故所求直線的方程為

(2)由題意可得, 點的軌跡是以為直徑的圓,記為圓

則圓的方程為

從而,

所以線段長度的最大值為,最小值為,

所以線段長度的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某大型景區(qū)有兩條直線型觀光路線, , ,點位于的平分線上,且與頂點相距1公里.現(xiàn)準(zhǔn)備過點安裝一直線型隔離網(wǎng) (分別在上),圍出三角形區(qū)域,且都不超過5公里.設(shè), (單位:公里).

(Ⅰ)求的關(guān)系式;

(Ⅱ)景區(qū)需要對兩個三角形區(qū)域, 進行綠化.經(jīng)測算, 區(qū)城每平方公里的綠化費用是區(qū)域的兩倍,試確定的值,使得所需的總費用最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過拋物線y2=2px(p>0)的焦點F的直線交拋物線于點A,B,交其準(zhǔn)線l于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為(   )

A. y2=9x B. y2=6x C. y2=3x D. y2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知短軸長為2的橢圓,直線的橫、縱截距分別為,且原點到直線的距離為

1)求橢圓的方程;

2)直線經(jīng)過橢圓的右焦點且與橢圓交于兩點,若橢圓上存在一點滿足,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件。已知設(shè)備甲每天的租賃費為200元,設(shè)備乙每天的租賃費為300元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費最少為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線關(guān)于軸對稱,頂點在坐標(biāo)原點,直線經(jīng)過拋物線的焦點.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過坐標(biāo)原點的直線與拋物線相交于不同的兩點, ,且滿足,證明直線軸上一定點,并求出點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在參加某次社會實踐的學(xué)生中隨機選取名學(xué)生的成績作為樣本,這名學(xué)生的成績?nèi)吭?/span>分至分之間,現(xiàn)將成績按如下方式分成組:第一組,成績大于等于分且小于分;第二組,成績大于等于分且小于分;第六組,成績大于等于分且小于等于分,據(jù)此繪制了如圖所示的頻率分布直方圖.在選取的名學(xué)生中.

Ⅰ)求的值及成績在區(qū)間內(nèi)的學(xué)生人數(shù).

Ⅱ)從成績小于分的學(xué)生中隨機選名學(xué)生,求最多有名學(xué)生成績在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足則該數(shù)列的前18項和為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為的函數(shù),如果同時滿足以下三條:對任意的,總有;;,都有成立,則稱函數(shù)為理想函數(shù).

(1) 若函數(shù)為理想函數(shù),求的值;

(2)判斷函數(shù)是否為理想函數(shù),并予以證明;

(3) 若函數(shù)為理想函數(shù),假定,使得,且,求證:

查看答案和解析>>

同步練習(xí)冊答案