已知函數(shù)的圖象與直線相切于點(diǎn).
(1)求實(shí)數(shù)的值; (2)求的極值.
(1),;(2).

試題分析:(1)將切點(diǎn)坐標(biāo)代入函數(shù)得一等式,函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為該點(diǎn)處切線的斜率,由這兩個(gè)等式可求得a、b的值. (2)將(1)所求得的a、b的值代入得,通過求導(dǎo),即得其極值.
試題解析:(1)由求導(dǎo)得:
               2分
據(jù)條件有
               5分
解之得,              6分
(2)據(jù)(1)知,所以
           7分
所以在區(qū)間、內(nèi)是增函數(shù),在區(qū)間上是減函數(shù)   9分 故        11分
            12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中為常數(shù).
(Ⅰ)若函數(shù)是區(qū)間上的增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,(其中),設(shè).
(Ⅰ)當(dāng)時(shí),試將表示成的函數(shù),并探究函數(shù)是否有極值;
(Ⅱ)當(dāng)時(shí),若存在,使成立,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,,.
(Ⅰ)請(qǐng)寫出的表達(dá)式(不需證明);
(Ⅱ)求的極小值;
(Ⅲ)設(shè),的最大值為的最小值為,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)研究函數(shù)的極值點(diǎn);
(2)當(dāng)時(shí),若對(duì)任意的,恒有,求的取值范圍;
(3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) (為實(shí)常數(shù)) .
(1)當(dāng)時(shí),求函數(shù)上的最大值及相應(yīng)的值;
(2)當(dāng)時(shí),討論方程根的個(gè)數(shù).
(3)若,且對(duì)任意的,都有,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)寫出函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)上值域是,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)為常實(shí)數(shù))的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031130710293.png" style="vertical-align:middle;" />,關(guān)于函數(shù)給出下列命題:
①對(duì)于任意的正數(shù),存在正數(shù),使得對(duì)于任意的,都有
②當(dāng)時(shí),函數(shù)存在最小值;
③若時(shí),則一定存在極值點(diǎn);
④若時(shí),方程在區(qū)間(1,2)內(nèi)有唯一解.
其中正確命題的序號(hào)是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)為,且是偶函數(shù), 則曲線:y=f(x)在點(diǎn)(2,f(2))處的切線方程為              .  

查看答案和解析>>

同步練習(xí)冊(cè)答案