若x2+x5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5,則a4=
 
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:由題意根據(jù)根據(jù)x5=[1+(x-1)]5,可得(x-1)4的系數(shù)為 a4=
C
4
5
,計算可得結果.
解答: 解:∵x2+x5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5,
再根據(jù)x5=[1+(x-1)]5,
可得(x-1)4的系數(shù)為 a4=
C
4
5
=5,
故答案為:5.
點評:本題主要考查二項式定理的應用,二項式展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在下列四個命題中,假命題為( 。
A、如果一條直線垂直于平面內(nèi)的無數(shù)條直線,那么這條直線和這個平面垂直
B、垂直于三角形兩邊的直線必垂直于第三邊
C、過點A垂直于直線a的所有直線都在過點A垂直于a的平面內(nèi)
D、如果三條共點直線兩兩垂直,那么其中一條直線垂直于另兩條直線確定的平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中裝有黑球和白球共7個,從中任取2個球都是黑球的概率為
2
7
,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…,取球后不放回,直到兩人中有一人取到白球時終止,每個球在每一次被取出的機會是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(Ⅰ)求隨機變量ξ的分布列及數(shù)學期望;
(Ⅱ)求乙取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cos(x-
π
6
),0),
n
=(2,0),x∈R,函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的表達式;
(2)求f(π)的值;
(3)若f(α+
3
)=
6
5
,α∈(-
π
2
,0),求f(2α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
,
b
為向量,若
a
+
b
a
的夾角為
π
3
,
a
+
b
b
的夾角為
π
4
,則
|
a
|
|
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面四個點中,位于
x+y-1<0
x-y+1>0
表示的平面區(qū)域內(nèi)的點是
 

(1)(0,2)(2)(-2,0)(3)(0,-2)(4)(2,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
4
=1(a>0)的一條漸近線與圓(x-3)2+y2=8相交于M,N兩點且|MN|=4,則此雙曲線的離心率為( 。
A、
5
B、
3
5
5
C、
5
5
3
D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
lnx-2x
x
的圖象在點(1,-2)處的切線方程為( 。
A、2x-y-4=0
B、2x+y=0
C、x-y-3=0
D、x+y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=2n2-1
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)p、q(p>1且q>1)使a1、ap、aq成等比數(shù)列?若存在,求出所有這樣的等比數(shù)列;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案