函數(shù)f(x)=
lnx-2x
x
的圖象在點(1,-2)處的切線方程為( 。
A、2x-y-4=0
B、2x+y=0
C、x-y-3=0
D、x+y+1=0
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出曲線的導(dǎo)函數(shù),把x=1代入即可得到切線的斜率,然后根據(jù)(1,2)和斜率寫出切線的方程即可.
解答: 解:由函數(shù)f(x)=
lnx-2x
x
知f′(x)=
1-lnx
x2

把x=1代入得到切線的斜率k=1,
則切線方程為:y+2=x-1,
即x-y-3=0.
故選:C.
點評:本題考查學(xué)生會利用導(dǎo)數(shù)求曲線上過某點的切線方程,考查計算能力,注意正確求導(dǎo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x,x≤1
-f(x-3),x>1
,則f(2014)的值為( 。
A、
1
4
B、2
C、-
1
4
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x2+x5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5,則a4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x-1)kcosx(k∈N*),則( 。
A、當(dāng)k=2013時,f(x)在x=1處取得極小值
B、當(dāng)k=2013時,f(x)在x=1處取得極大值
C、當(dāng)k=2014時,f(x)在x=1處取得極小值
D、當(dāng)k=2014時,f(x)在x=1處取得極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,若(m+i)2=3-4i,則實數(shù)m的值為(  )
A、-2
B、±2
C、±
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形OABC內(nèi):記拋物線y=x2+1與直線y=x+1圍成的區(qū)域為M(圖中陰影部分).隨機往矩形OABC內(nèi)投一點P,則點P落在區(qū)域M內(nèi)的概率是( 。
A、
1
18
B、
1
12
C、
1
6
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)F(x)在區(qū)間D上的導(dǎo)函數(shù)為F1(x),F(xiàn)1(x)在區(qū)間D上的導(dǎo)函數(shù)為F2(x),如果當(dāng)x∈D時,F(xiàn)2(x)≥0,則稱F(x)在區(qū)間D上是下凸函數(shù).已知e是自然對數(shù)的底數(shù),f(x)=ex-ax3+3x-6.
(1)若f(x)在[0,+∞)上是下凸函數(shù),求a的取值范圍;
(2)設(shè)M(x)=f(x)+f(-x)+12,n是正整數(shù),求證:M(1)M(2)…M(n)>
(en+1+2)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
2
=1(a2>2)的右焦點F到直線x-y+2
2
=0的距離為3.
(1)橢圓C的方程;
(2)是否存在直線l:y=kx+1,使l與橢圓C交于兩不同的點M、N,且|FM|=|FN|?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x0,y0)是橢圓C:
x2
5
+y2=1
上的一點.F1、F2是橢圓C的左右焦點.
(1)若∠F1PF2是鈍角,求點P橫坐標(biāo)x0的取值范圍;
(2)求代數(shù)式
y
2
0
+2x0
的最大值.

查看答案和解析>>

同步練習(xí)冊答案