【題目】設函數(shù)為偶函數(shù).

1 的值;

2)若的最小值為,求的最大值及此時的取值;

3)在(2)的條件下,設函數(shù),其中.已知處取得最小值并且點是其圖象的一個對稱中心,試求的最小值.

【答案】1;(2)最大值為 此時的取值為;(3

【解析】

1)根據(jù) 是偶函數(shù),轉化為 對一切恒成立求解.

2)由(1)得到 , 根據(jù)最小值為, ,得到,然后再求最大值.

3)由(2)得到,根據(jù)處取最小值,點是其圖象的一個對稱中心,,由求解.

1)因為 是偶函數(shù),

所以 對一切恒成立,

所以.

2)由(1)知 ,

因為其最小值為,

所以 ,

所以

時,取得最大值, 此時;

3)由(2)知:,

,

因為處取最小值,且點是其圖象的一個對稱中心,

所以,

所以,,

所以,則,

,

又因為,

所以,

時,

處取得最大值,不符合題意;

時,

, 取不到最小值,,不符合題意;

時, ,

處取得最小值,

,的圖象關于點中心對稱,

所以的最小值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,,在圓E上,過點的直線l與圓E相切.

求圓E的方程;

求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,,軸上兩個動點,點在直線上,且滿足,.

(1)求點的軌跡方程;

(2)記點的軌跡為曲線為曲線正半軸的交點,為曲線上與不重合的兩點,且直線與直線的斜率之積為,試探究面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個纜車示意圖,該纜車的半徑為4.8 m,圓上最低點與地面的距離為0.8 m,纜車每60 s轉動一圈,圖中OA與地面垂直,以OA為始邊,逆時針轉動θ角到OB,設B點與地面的距離為h m.

(1)求h與θ之間的函數(shù)解析式;

(2)設從OA開始轉動,經(jīng)過t s達到OB,求h與t之間的函數(shù)解析式,并計算經(jīng)過45 s后纜車距離地面的高度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線

1)若直線與圓O交于不同的兩點A, B,當時,求k的值.

2)若k=1,P是直線上的動點,過P作圓O的兩條切線PC、PD,切點為C、D,問:直線CD是否過定點?若過定點,求出定點坐標;若不過定點,說明理由.

3)若EF、GH為圓的兩條相互垂直的弦,垂足為M(1,),求四邊形EGFH的面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的長軸為,過點的直線軸垂直,橢圓的離心率, 為橢圓的左焦點,.

Ⅰ)求此橢圓的方程;

(Ⅱ是此橢圓上異于的任意一點, , 為垂足,延長到點使得.連接并延長交直線于點, 的中點,判定直線與以為直徑的圓的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,準線為.已知以為圓心半徑為4的圓與交于、兩點, 是該圓與拋物線的一個交點, .

1)求的值;

2)已知點的縱坐標為且在 、上異于點的另兩點,且滿足直線和直線的斜率之和為,試問直線是否經(jīng)過一定點,若是,求出定點的坐標,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】半期考試后,班長小王統(tǒng)計了50名同學的數(shù)學成績,繪制頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖,估計這50名同學的數(shù)學平均成績;

用分層抽樣的方法從成績低于115的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學數(shù)學成績均在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一鐵塊高溫融化后制成一張厚度忽略不計、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成A,B,C三個矩形(B,C全等),用來制成一個柱體.現(xiàn)有兩種方案:

方案①:以為母線,將A作為圓柱的側面展開圖,并從BC中各裁剪出一個圓形作為圓柱的兩個底面;

方案②:以為側棱,將A作為正四棱柱的側面展開圖,并從B,C中各裁剪出一個正方形(各邊分別與垂直)作為正四棱柱的兩個底面.

1B,C都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;

2的長為dm,則當為多少時,能使按方案②制成的正四棱柱的體積最大?

查看答案和解析>>

同步練習冊答案