【題目】已知正項等比數(shù)列的前項和為,首項,且,正項數(shù)列滿足,.

(1)求數(shù)列,的通項公式;

(2)記,是否存在正整數(shù),使得對任意正整數(shù),恒成立?若存在,求正整數(shù)的最小值,若不存在,請說明理由.

【答案】(1)(2)見解析

【解析】

(1)先設(shè)等比數(shù)列的公比為,根據(jù)題中條件,求出公比,即可得出的通項公式;再由累乘法求出,根據(jù)題中條件求出代入驗證,即可得出的通項公式;

(2)先由(1)化簡,根據(jù),求出的最大值,進而可得出結(jié)果.

解:(1)設(shè)等比數(shù)列的公比為,

,得,

,則

所以.

,由,得

,,

以上各式相乘得:,所以.

中,分別令,,得滿足.

因此.

(2)由(1)知,

,

又∵

,

,得,

,解得,

∴當時,,即.

∵當時,,,

,即.

此時,即,

的最大值為.

若存在正整數(shù),使得對任意正整數(shù),恒成立,則,

∴正整數(shù)的最小值為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 1個自然數(shù)隨機填入n×n方格的個方格中,每個方格恰填一個數(shù)().對于同行或同列的每一對數(shù),都計算較大數(shù)與較小數(shù)的比值,在這個比值中的最小值,稱為這一填數(shù)法的特征值”.

(1),請寫出一種填數(shù)法,并計算此填數(shù)法的特征值”;

(2)時,請寫出一種填數(shù)法,使得此填數(shù)法的特征值

(3)求證:對任意一個填數(shù)法,其特征值不大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了名選手進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認為選手成績“優(yōu)秀”與文化程度有關(guān)?

優(yōu)秀

合格

合計

大學(xué)組

中學(xué)組

合計

注:,其中.

(2)若參賽選手共萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個口袋里裝有個白球和個紅球,從口袋中任取個球.

(1)共有多少種不同的取法?

(2)其中恰有一個紅球,共有多少種不同的取法?

(3)其中不含紅球,共有多少種不同的取法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量 (噸)與相應(yīng)的生產(chǎn)能耗 (噸標準煤)的幾組對照數(shù)據(jù)

(1)

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)1求出的線性同歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?

(附: ,,,,其中,為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

(1)若直線過定點,且與圓相切,求的方程;

(2)若圓的半徑為,圓心在直線上,且與圓外切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC外接圓半徑是2, ,則△ABC的面積最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+mx(m為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當 時,設(shè) 的兩個極值點x1 , x2(x1<x2)恰為h(x)=2lnx﹣ax﹣x2的零點,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點為圓心的圓被直線截得的弦長為.

(1)求圓的標準方程;

(2)求過與圓相切的直線方程;

(3)若軸的動點,分別切圓,兩點.試問:直線是否恒過定點?若是,求出恒過點坐標;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案