【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點分別為,的中點.

(1)求證:平面平面;

(2)在線段上是否存在點,使得直線與平面所成的角的正弦值為?若存在,確定點的位置;若不存在,請說明理由.

【答案】(1)見解析(2)見解析

【解析】

(1)先證明,,可得平面從而平面平面;

(2)由題意可知兩兩垂直,分別以方向為軸建立坐標系,求出平面的法向量及,代入公式可得未知量的方程,解之即可.

(1)證明:∵,的中點,

平面平面,∴

平面

平面

∴平面平面

(2)如圖,由(1)知,,,點,分別為的中點,

,∴,,又,

兩兩垂直,分別以方向為軸建立坐標系.

,,,

,

所以

,設平面的法向量,則

,,令,則,,

由已知 (舍去)

故線段上存在點,使得直線與平面所成的角的正弦值為,

此時為線段的中點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,已知曲線的極坐標方程為.

(1)求的直角坐標方程;

(2)直線為參數(shù))與曲線交于兩點,與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為“中學數(shù)學聯(lián)賽”選拔人才,分初賽和復賽兩個階段進行,規(guī)定:分數(shù)不小于本次考試成績中位數(shù)的具有復賽資格,某校有900名學生參加了初賽,所有學生的成績均在區(qū)間內,其頻率分布直方圖如圖.

(1)求獲得復賽資格應劃定的最低分數(shù)線;

(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區(qū)間各抽取多少人?

(3)從(2)抽取的7人中,選出4人參加全市座談交流,設表示得分在中參加全市座談交流的人數(shù),學校打算給這4人一定的物質獎勵,若該生分數(shù)在給予500元獎勵,若該生分數(shù)在給予800元獎勵,用Y表示學校發(fā)的獎金數(shù)額,求Y的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線的參數(shù)方程為:為參數(shù),在以坐標原點為極點,x軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為:,直線與曲線交于A,B兩點,

求曲線的普通方程及的最小值;

若點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(大小忽略不計,取),則落在小正方形(陰影)內的米粒數(shù)大約為( )

A. 134 B. 67 C. 200 D. 250

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在區(qū)間上是增函數(shù).

(1)求實數(shù)的值組成的集合

(2)設關于的方程的兩個非零實根為、試問:是否存在實數(shù),使得不等式對任意 恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于隨機變量及分布的說法正確的是(

A.拋擲均勻硬幣一次,出現(xiàn)正面的次數(shù)是隨機變量

B.某人射擊時命中的概率為0.5,此人射擊三次命中的次數(shù)服從兩點分布

C.離散型隨機變量的分布列中,隨機變量取各個值的概率之和可以小于1

D.離散型隨機變量的各個可能值表示的事件是彼此互斥的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行的“三色球”購物摸獎活動規(guī)定:在一次摸獎中,摸獎者先從裝有3個紅球與4個白球的袋中任意摸出3個球,再從裝有1個藍球與2個白球的袋中任意摸出1個球,根據(jù)摸出4個球中紅球與藍球的個數(shù),設一、二、三等獎如下:

獎級

摸出紅、藍球個數(shù)

獲獎金額

一等獎

31

200

二等獎

30

50

三等獎

21

10

其余情況無獎且每次摸獎最多只能獲得一個獎級.

1)求摸獎者第一次摸球時恰好摸到1個紅球的概率;

2)求摸獎者在一次摸獎中獲獎金額的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上是增函數(shù).

求實數(shù)的值;

若函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案