如圖,在正四棱臺內(nèi),以小底為底面。大底面中心為頂點作一內(nèi)接棱錐. 已知棱臺小底面邊長為
b,大底面邊長為
a,并且棱臺的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個棱錐的高,并指出有解的條件.
當(dāng)且僅當(dāng)
時才有解.
如圖,過高
的中點
E作棱錐和棱臺的截面,得棱臺的斜高
EE1和棱錐的斜高為
EO1,設(shè)
,所以
①式兩邊平方,把②代入得:
顯然,由于
,所以此題當(dāng)且僅當(dāng)
時才有解.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐P—ABCD的底面是正方形,PA
底面ABCD,PA=2,
,
點E,F(xiàn)分別為棱AB,PD的中點。
(I)在現(xiàn)有圖形中,找出與AF平行的平面,并給出證明;
(II)判斷平面PCE與平面PCD是否垂直?若垂直,給出證明;若不垂直,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知三棱柱
中,側(cè)棱垂直于底面,底面△ABC中
,
點
是
的中點。
(1)求證:
(2)求證:
(3)求
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖3,在正三棱柱
中,
AB=4,
,點
D是
BC的中點,
點
E在
AC上,且
DEE。
(Ⅰ)證明:平面
平面
;
(Ⅱ)求直線
AD和平面
所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)如圖甲,直角梯形
中,
,
,點
、
分別在
,
上,且
,
,
,
,現(xiàn)將梯形
沿
折起,使平面
與平面
垂直(如圖乙).
(Ⅰ)求證:
平面
;
(Ⅱ)當(dāng)
的長為何值時,
二面角
的大小為
?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,已知正方形ABCD和梯形ACEF所在的平面互相垂直,
,CE//AF,
(I)求證:CM//平面BDF;
(II)求異面直線CM與FD所成角的大。
(III)求二面角A—DF—B的大小。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知某幾何體的三視圖如下圖所示,其中左視圖是邊長為2的正三角形,主視圖是矩形且
,俯視圖中
分別是所在邊的中點,設(shè)
為
的中點.
(1)求其體積;(2)求證:
;
(3)
邊上是否存在點
,使
?若不存在,說明理由;若存在,請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐P—ABCD中,PA⊥底面ABCD,∠
, AB∥CD,AD=CD=2AB=2,E,F(xiàn)分別是PC,CD的中點.
(Ⅰ)證明:CD⊥平面BEF;
(Ⅱ)設(shè)
,
求
k的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,PC⊥平面ABC,PM∥CB,∠ACB=120°,PM=AC=1,BC=2,異面直線AM與直線PC所成的角為60°.
(Ⅰ)求二面角M-AC-B大小的正切值;
(Ⅱ)求三棱錐P-MAC的體積.
查看答案和解析>>