如圖,四棱錐P—ABCD的底面是正方形,PA底面ABCD,PA=2,

點E,F(xiàn)分別為棱AB,PD的中點。
(I)在現(xiàn)有圖形中,找出與AF平行的平面,并給出證明;
(II)判斷平面PCE與平面PCD是否垂直?若垂直,給出證明;若不垂直,說明理由。
(1)見解析(2)垂直
(I)平面平行, 取中點,連,因為中點,

所以,在正方形中,,所以
所以為平行四邊形,
所以,所以平面
(II)由平面,所以,又,
所以,由(I)知,易證
所以,又,所以,面PCD面PEC…………12分
(也可用空間向量法)
以A為原點AB 為X軸、AD為Y軸、 AP為Z軸,建立空間坐標(biāo)系!1分
易求A(0,0,0),F(xiàn)(0,1,1),G(1,1,1),E(1,0,0),
P(0,0,2),D(0,2,0),C(2,2,0)
,所以AF//面PEG。
設(shè)面PCD的法向量為=(x,y,z),由D得x=0,y=z.
,設(shè)面PEC的法向量為,
,可令
因為,所以,面PCD面PEC
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四棱錐的底面為直角梯形,,,,底面的中點.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成的角;
(Ⅲ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用一個平面去截正方體,對于截面的邊界,有以下圖形:
①鈍角三角形;②直角梯形;③菱形;④正五邊形;⑤正六邊形。
則不可能的圖形的選項為(   )
A.③④⑤B.①②⑤C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,AD//BC,,當(dāng)E、F分別在線段AD、BC上,且,AD=4,CB=6,AE=2,現(xiàn)將梯形ABCD沿EF折疊,使平面ABFE與平面EFCD垂直。
小題1:判斷直線AD與BC是否共面,并證明你的結(jié)論;
小題2:當(dāng)直線AC與平面EFCD所成角為多少時,二面角A—DC—E的大小是60°。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

正方體,的棱長為1,的中點,則下列五個命題:
①點到平面,的距離為
②直線與平面,所成的角等于
③空間四邊形,在正方體六個面內(nèi)形成六個射影,其面積的最小值是
所成的角
⑤二面角的大小為 
其中真命題是                     。(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

連結(jié)球面上兩點的線段稱為球的弦。半徑為4的球的兩條弦、的長度分別等于,分別為、的中點,每條弦的兩端都在球面上運(yùn)動,有下列四個命題:
①弦、可能相交于點        ②弦可能相交于點
的最大值為5                    ④的最小值為1
其中真命題的個數(shù)為
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正四棱臺內(nèi),以小底為底面。大底面中心為頂點作一內(nèi)接棱錐. 已知棱臺小底面邊長為b,大底面邊長為a,并且棱臺的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個棱錐的高,并指出有解的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在一個容積為6的密封的透明正方體容器內(nèi)裝有液體,如果任意轉(zhuǎn)動該正方體,液面的形狀都不是三角形,那么液體體積的取值范圍是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)
已知如圖(1),正三角形ABC的邊長為2a,CDAB邊上的高,EF分別是AC
BC邊上的點,且滿足,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖(2).
(Ⅰ) 試判斷翻折后直線AB與平面DEF的位置關(guān)系,并說明理由
(Ⅱ) 求二面角B-AC-D的平面角的正切值.
 
圖(1)                  圖(2)

查看答案和解析>>

同步練習(xí)冊答案