【題目】如圖,在三棱柱中,側(cè)棱底面,,分別為棱,的中點(diǎn).

1)求證:;

2)若,,求三棱錐的體積;

3)判斷直線與平面的位置關(guān)系,并說明理由.

【答案】1)證明見解析 2 3平面AEF,理由見解析

【解析】

1)首先證出,,根據(jù)線面垂直的判定定理證出平面,再由線面垂直的定義即證.

2)證出為三棱錐的高,利用三棱錐的體積公式以及等體法即可求解.

3)利用線面平行的判定定理即可證出直線與平面的位置關(guān)系.

證明:(1

平面平面

,點(diǎn)為的中點(diǎn),

,

平面

平面

,即

2,故

三棱柱中,側(cè)棱底面,

平面

平面,

平面

為三棱錐的高

3平面,證明如下:

連接,記相交于點(diǎn) ,連接

分別為的中點(diǎn),

四邊形為平行四邊形

中點(diǎn),

中點(diǎn),

平面平面,

平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD△ABD折起,使A移到A1點(diǎn),且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC

)求證:BC⊥A1D;

)求證:平面A1BC⊥平面A1BD

)求點(diǎn)C到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐中,,,,點(diǎn)上,且.

1)證明:平面;

2)求以為棱,為面的二面角的大小

3)在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形.點(diǎn)是棱的中點(diǎn),平面與棱交于點(diǎn)

1)求證:

2)若,且平面平面,試證明平面

3)在(2)的條件下,線段上是否存在點(diǎn),使得平面?(直接給出結(jié)論,不需要說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近8年的宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中

附:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:

1)根據(jù)散點(diǎn)圖判斷,,哪一個適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)已知這種產(chǎn)品的年利潤的關(guān)系為,根據(jù)(2)的結(jié)果回答:當(dāng)年宣傳費(fèi)時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高中生在被問及家,朋友聚集的地方,個人空間三個場所中感到最幸福的場所在哪里?這個問題時(shí),從中國某城市的高中生中,隨機(jī)抽取了55人,從美國某城市的高中生中隨機(jī)抽取了45人進(jìn)行答題.中國高中生答題情況是:選擇家的占、朋友聚集的地方占、個人空間占.美國高中生答題情況是朋友聚集的地方占、家占個人空間占.如下表

在家里最幸福

在其它場所幸福

合計(jì)

中國高中生

美國高中生

合計(jì)

(Ⅰ)請將列聯(lián)表補(bǔ)充完整;試判斷能否有的把握認(rèn)為戀家與否與國別有關(guān);

(Ⅱ)從被調(diào)查的不戀家的美國學(xué)生中,用分層抽樣的方法選出4人接受進(jìn)一步調(diào)查,再從4人中隨機(jī)抽取2人到中國交流學(xué)習(xí),求2人中含有在個人空間感到幸福的學(xué)生的概率.

,其中.

0.050

0.025

0.010

0.001

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的零點(diǎn);

2)若關(guān)于的方程()恰有個不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種計(jì)算機(jī)病毒是通過電子郵件進(jìn)行傳播的,下表是某公司前5天監(jiān)測到的數(shù)據(jù):

1

2

3

4

5

被感染的計(jì)算機(jī)數(shù)量(臺)

10

20

39

81

160

則下列函數(shù)模型中,能較好地反映計(jì)算機(jī)在第天被感染的數(shù)量之間的關(guān)系的是

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案