【題目】如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD把△ABD折起,使A移到A1點,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.
(Ⅰ)求證:BC⊥A1D;
(Ⅱ)求證:平面A1BC⊥平面A1BD;
(Ⅲ)求點C到平面A1BD的距離.
【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).
【解析】
試題(Ⅰ)由線面垂直得A1O⊥BC,再由BC⊥DC,能證明BC⊥A1D.
(Ⅱ)由BC⊥A1D,A1D⊥A1B,得A1D⊥平面A1BC,由此能證明平面A1BC⊥平面A1BD.
(Ⅲ)由=,能求出點C到平面A1BD的距離.
證明:(Ⅰ)∵A1O⊥平面DBC,∴A1O⊥BC,
又∵BC⊥DC,A1O∩DC=O,
∴BC⊥平面A1DC,∴BC⊥A1D.
(Ⅱ)∵BC⊥A1D,A1D⊥A1B,BC∩A1B=B,
∴A1D⊥平面A1BC,
又∵A1D平面A1BD,
∴平面A1BC⊥平面A1BD.
解:(Ⅲ)設(shè)C到平面A1BD的距離為h,
∵=,
∴=,
又∵=S△DBC,,∴.
∴點C到平面A1BD的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且a+b+c=8.
(1)若a=2,b=,求cosC的值;
(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面積S=sinC,求a和b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若存在,使得關(guān)于x的方程有三個不相等的實數(shù)解,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率,過點A(0,-b)和B(a,0)的直線與原點的距離為.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓: 的離心率為,上、下頂點分別為、,點在橢圓上,且異于點、,直線、與直線: 分別交于點、,且面積的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求線段的長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示.
(1)求函數(shù)的解析式及其對稱軸方程;
(2)求函數(shù)在區(qū)間上的最大值和最小值,并指出取得最值時的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱底面,,,,分別為棱,,的中點.
(1)求證:;
(2)若,,求三棱錐的體積;
(3)判斷直線與平面的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com