以拋物線的焦點(diǎn)為圓心,且過坐標(biāo)原點(diǎn)的圓的方程為(   )
A.B.
C.D.
A

試題分析:∵拋物線的焦點(diǎn)為(1,0),又圓過原點(diǎn),∴半徑,∴所求圓的方程為,故選A
點(diǎn)評:熟練掌握拋物線的性質(zhì)及圓的方程的求法是解決此類問題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面內(nèi)一動點(diǎn)到點(diǎn)的距離與點(diǎn)軸的距離的差等于1.(I)求動點(diǎn)的軌跡的方程;(II)過點(diǎn)作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點(diǎn),與軌跡相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn),過原點(diǎn)和軸不重合的直線與橢圓 相交于,兩點(diǎn),且,最小值為
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓:的切線與橢圓相交于,兩點(diǎn),當(dāng),兩點(diǎn)橫坐標(biāo)不相等時,問:是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)是雙曲線和圓的一個交點(diǎn),是雙曲線的兩個焦點(diǎn),,則雙曲線的離心率為
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),且它的離心率.直線
與橢圓交于兩點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時,求證:兩點(diǎn)的橫坐標(biāo)的平方和為定值;
(Ⅲ)若直線與圓相切,橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓()過點(diǎn),其左、右焦點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個動點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,線段的兩個端點(diǎn)分別分別在軸、軸上滑動,,點(diǎn)上一點(diǎn),且,點(diǎn)隨線段的運(yùn)動而變化.

(1)求點(diǎn)的軌跡方程;
(2)設(shè)為點(diǎn)的軌跡的左焦點(diǎn),為右焦點(diǎn),過的直線交的軌跡于兩點(diǎn),求的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是橢圓的右焦點(diǎn),定點(diǎn)A,M是橢圓上的動點(diǎn),則的最小值為                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的弦被點(diǎn)平分,則此弦所在的直線方程是 (    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案