【題目】設(shè)n為正整數(shù),集合A=,,,,,.對(duì)于集合A中的任意元素和,記.
(Ⅰ)當(dāng)n=3時(shí),若,,求和的值;
(Ⅱ)當(dāng)時(shí),對(duì)于中的任意兩個(gè)不同的元素,,證明:.
(Ⅲ)給定不小于2的正整數(shù)n,設(shè)B是A的子集,且滿(mǎn)足:對(duì)于B中的任意兩個(gè)不同元素,,.寫(xiě)出一個(gè)集合B,使其元素個(gè)數(shù)最多,并說(shuō)明由.
【答案】(Ⅰ)2,2;(Ⅱ)證明見(jiàn)解析;(Ⅲ)見(jiàn)解析.
【解析】
(Ⅰ)根據(jù)定義直接計(jì)算即可;
(Ⅱ)設(shè),,有,,可得,
所以,易得,
,即可證明結(jié)論.
(Ⅲ)根據(jù)抽屜原理即可得證.
(Ⅰ)因?yàn)?/span>,,
所以,
;
(Ⅱ)當(dāng)時(shí),對(duì)于中的任意兩個(gè)不同的元素,
設(shè),,有
,.
對(duì)于任意的,,,,,,
當(dāng)時(shí),有,
當(dāng)時(shí),有.
即,
所以,有,
又因?yàn)?/span>,
所以,,,,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
所以,
,
即,當(dāng)且僅當(dāng)(,,,)時(shí)等號(hào)成立;
(Ⅲ)由(Ⅱ)可證,對(duì)于任意的,
若,則,成立.
所以,考慮設(shè)
,
,,,,,
對(duì)于任意的,,,,
,,,
所以,
假設(shè)滿(mǎn)足條件的集合B中元素個(gè)數(shù)不少于,
則至少存在兩個(gè)元素在某個(gè)集合(,,,)中,
不妨設(shè)為,則.
與假設(shè)矛盾,所以滿(mǎn)足條件的集合B中元素個(gè)數(shù)不多于.
取;
對(duì)于,,,,取,且;.
令,
則集合滿(mǎn)足條件,且元素個(gè)數(shù)為,
故是一個(gè)滿(mǎn)足條件且元素個(gè)數(shù)最多的集合.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓.點(diǎn)E為橢圓在第一象限內(nèi)一點(diǎn),點(diǎn)F在橢圓上且與點(diǎn)E關(guān)于原點(diǎn)對(duì)稱(chēng),直線與橢圓交于A,B兩點(diǎn),則點(diǎn)E,F到直線x+y-1=0的距離之和的最大值是________;此時(shí)四邊形AEBF的面積是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,、分別是其左、右焦點(diǎn),過(guò)的直線與橢圓交于兩點(diǎn),且橢圓的離心率為,的周長(zhǎng)等于.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著網(wǎng)上購(gòu)物的普及,傳統(tǒng)的實(shí)體店遭受到了強(qiáng)烈的沖擊,某商場(chǎng)實(shí)體店近九年來(lái)的純利潤(rùn)如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
時(shí)間代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
實(shí)體店純利潤(rùn)(千萬(wàn)) | 2 | 2.3 | 2.5 | 2.9 | 3 | 2.5 | 2.1 | 1.7 | 1.2 |
根據(jù)這9年的數(shù)據(jù),對(duì)和作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.254;根據(jù)后5年的數(shù)據(jù),對(duì)和作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.985;
(1)如果要用線性回歸方程預(yù)測(cè)該商場(chǎng)2019年實(shí)體店純利潤(rùn),現(xiàn)有兩個(gè)方案:
方案一:選取這9年的數(shù)據(jù),進(jìn)行預(yù)測(cè);
方案二:選取后5年的數(shù)據(jù)進(jìn)行預(yù)測(cè).
從生活實(shí)際背景以及相關(guān)性檢驗(yàn)的角度分析,你覺(jué)得哪個(gè)方案更合適.
附:相關(guān)性檢驗(yàn)的臨界值表:
小概率 | ||
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
7 | 0.666 | 0.798 |
(2)某機(jī)構(gòu)調(diào)研了大量已經(jīng)開(kāi)店的店主,據(jù)統(tǒng)計(jì),只開(kāi)網(wǎng)店的占調(diào)查總?cè)藬?shù)的,既開(kāi)網(wǎng)店又開(kāi)實(shí)體店的占調(diào)查總?cè)藬?shù)的,現(xiàn)以此調(diào)查統(tǒng)計(jì)結(jié)果作為概率,若從上述統(tǒng)計(jì)的店主中隨機(jī)抽查了5位,求只開(kāi)實(shí)體店的人數(shù)的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下(提示:可以用第(2)問(wèn)的結(jié)論),對(duì)任意的,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在從100到999的所有三位數(shù)中,百位、十位、個(gè)位數(shù)字依次構(gòu)成等差數(shù)列的有__________個(gè);構(gòu)成等比數(shù)列的有__________個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,為正三角形,為棱的中點(diǎn),,,平面平面
(1)求證:平面平面;
(2)若是棱上一點(diǎn),與平面所成角的正弦值為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家正積極推行垃圾分類(lèi)工作,教育部辦公廳等六部門(mén)也發(fā)布了《關(guān)于在學(xué)校推進(jìn)生活垃圾分類(lèi)管理工作的通知》.《通知》指出,到2020年底,各學(xué)校生活垃圾分類(lèi)知識(shí)普及率要達(dá)到100%某市教育主管部門(mén)據(jù)此做了“哪些活動(dòng)最能促進(jìn)學(xué)生進(jìn)行垃圾分類(lèi)”的問(wèn)卷調(diào)查(每個(gè)受訪者只能在問(wèn)卷的4個(gè)活動(dòng)中選擇一個(gè))如圖是調(diào)查結(jié)果的統(tǒng)計(jì)圖,以下結(jié)論正確的是( )
A.回答該問(wèn)卷的受訪者中,選擇的(2)和(3)人數(shù)總和比選擇(4)的人數(shù)多
B.回該問(wèn)卷的受訪者中,選擇“校園外宣傳”的人數(shù)不是最少的
C.回答該問(wèn)卷的受訪者中,選擇(4)的人數(shù)比選擇(2)的人數(shù)可能多30人
D.回答該問(wèn)卷的總?cè)藬?shù)不可能是1000人
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)若,求在區(qū)間[-1,2]上的取值范圍;
(Ⅱ)若對(duì)任意, 恒成立,記,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com