設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm1=-2Sm0,Sm13m________

 

5

【解析】amSmSm12,am1Sm1Sm3,d1am2Sm0解得m5.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第6課時(shí)練習(xí)卷(解析版) 題型:填空題

等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S100S1525,nSn的最小值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

數(shù)列12,34,…的前n項(xiàng)和是__________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

在數(shù)列{an},a12an14an3n1,nN*.

(1)求證:數(shù)列{ann}是等比數(shù)列;

(2)求數(shù)列{an}的前n項(xiàng)和Sn;

(3)求證:不等式Sn14Sn對(duì)任意n∈N*皆成立.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,a11a632,S3________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第2課時(shí)練習(xí)卷(解析版) 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,nN*,且滿足a2a414,S770.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)bn則數(shù)列{bn}的最小項(xiàng)是第幾項(xiàng),并求該項(xiàng)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第2課時(shí)練習(xí)卷(解析版) 題型:填空題

已知數(shù)列{an}為等差數(shù)列,a1=-311a55a8,則使前n項(xiàng)和Sn取最小值的n________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第1課時(shí)練習(xí)卷(解析版) 題型:填空題

已知數(shù)列{an}的通項(xiàng)公式是ann28n5個(gè)數(shù)列的最小項(xiàng)是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第7課時(shí)練習(xí)卷(解析版) 題型:填空題

設(shè)a1,若對(duì)任意的x∈[a2a],都有y∈[aa2]滿足方程logaxlogay3,a的取值范圍是________

 

查看答案和解析>>

同步練習(xí)冊(cè)答案