已知,AB為圓O的直徑,CD為垂直AB的一條弦,垂足為E,弦AG交CD于F.
(1)求證:E、F、G、B四點共圓;
(2)若GF=2FA=4,求線段AC的長.
考點:與圓有關的比例線段
專題:計算題,證明題,立體幾何
分析:(1)連結BG,由AB為直徑可知∠AGB=90°,又CD⊥AB,由此能證明E、F、G、B四點共圓;
(2)連結BC,由E、F、G、B四點共圓,運用切割線定理,得AF•AG=AE•BA,再由直角三角形ABC中的射影定理,得AC2=AE•BA,代入數(shù)據(jù),即可求出線段AC的長.
解答: (1)證明:如圖,連結BG,
由AB為直徑可知∠AGB=90°
又CD⊥AB,所以∠BEF=∠AGB=90°,
因此E、F、G、B四點共圓.
(2)解:連結BC,由E、F、G、B四點共圓,
所以AF•AG=AE•BA,
在Rt△ABC中,AC2=AE•BA,
由于GF=2FA=4,得AF=2,F(xiàn)G=4,即有AG=6,
所以AC2=2×6,
故AC=2
3
點評:本題考查四點共圓的證明,考查運用圓的切割線定理和直角三角形的射影定理,求線段長,解題時要認真審題,注意圓的性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算:lg5(lg8+lg1000)+(lg2
3
2+lg
1
6
+lg0.006=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y=-2x,x∈[2,3]},B={x|x2+3x-a2-3a>0}.
(1)當a=4時,求A∩B;
(2)若命題“x∈A”是命題“x∈B”的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,終邊落在OA位置的角α的集合是
 
;終邊落在OB位置,且在-360°~360°內的角α的集合是
 
;終邊落在陰影部分(不含邊界)的角α的集合是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二直線mx+3y+3=0,2x+(m-1)y+2=0平行,則實數(shù)m的值為( 。
A、3或-2B、-3或2
C、3D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊長為2,分別以DB,AC所在直線為x,y軸建立直角坐標系,用斜二測畫法得到水平放置的正方形ABCD的直觀圖A′B′C′D′,則四邊形A′B′C′D′的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓的中心在原點,焦點F1、F2在x軸上,A、B是橢圓的頂點,P是橢圓上一點,且
PF1⊥x軸,PF2∥AB,則此橢圓的離心率是( 。
A、
1
2
B、
1
3
C、
5
5
D、
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①(
a
2•(
a
2=|
a
|4;
②(
a
b
)•
c
=(
a
c
)•
b
;
③|
a
b
|=|
a
|•|
b
|;
④若
a
b
,
b
c
,則
a
c

a
b
,則存在唯一實數(shù)λ,使
b
a
;
⑥若
a
c
=
b
c
,且
c
0
,則
a
=
b
;
⑦設
e1
,
e2
是平面內兩向量,則對于平面內任何一向量
a
,都存在唯一一組實數(shù)x、y,使
a
=x
e1
+y
e2
成立;
⑧若
a
b
=0,則
a
=
0
b
=
0

真命題的題號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(x,-1)
,
b
=(2,y)
,其中x隨機選自集合{-1,1,3},y隨機選自集合{-2,2,6},
(Ⅰ)求
a
b
的概率;        
(Ⅱ)求
a
b
的概率.

查看答案和解析>>

同步練習冊答案