點P(-2,2)在以(0,-1)為圓心的圓C上,求圓C的方程;又若點A(2a-1,a-1)及點B(2a+1,a-1),均在圓C的內(nèi)部,求實數(shù)a的取值范圍.

答案:
解析:

  解 設圓的半徑為r,則=13,∴圓C的方程是=13.

  又由題設A,B兩點在圓C的內(nèi)部,由得實數(shù)a的取值范圍是


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
m
+y2
=1的左、右焦點分別為F1,F(xiàn)2,若橢圓上總存在點P,使得點P在以F1F2為直徑的圓上;
(1)求橢圓離心率的取值范圍;
(2)若AB是橢圓C的任意一條不垂直x軸的弦,M為弦AB的中點,且滿足KAB•KOM=-
1
4
(其中KAB、KOM分別表示直線AB、OM的斜率,O為坐標原點),求滿足題意的橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1:(x+2)2+y2=4及點C2(2,0),在圓C1上任取一點P,連接C2P,做線段C2P的中垂線交直線C1P于點M.
(1)當點P在圓C1上運動時,求點M的軌跡E的方程;
(2)設軌跡E與x軸交于A1,A2兩點,在軌跡E上任取一點Q(x0,y0)(y0≠0),直線QA1,QA2分別交y軸于D,E兩點,求證:以線段DE為直徑的圓C過兩個定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年黑龍江省哈爾濱六中高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知圓及點C2(2,0),在圓C1上任取一點P,連接C2P,做線段C2P的中垂線交直線C1P于點M.
(1)當點P在圓C1上運動時,求點M的軌跡E的方程;
(2)設軌跡E與x軸交于A1,A2兩點,在軌跡E上任取一點Q(x,y)(y≠0),直線QA1,QA2分別交y軸于D,E兩點,求證:以線段DE為直徑的圓C過兩個定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年黑龍江省哈爾濱六中高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知圓及點C2(2,0),在圓C1上任取一點P,連接C2P,做線段C2P的中垂線交直線C1P于點M.
(1)當點P在圓C1上運動時,求點M的軌跡E的方程;
(2)設軌跡E與x軸交于A1,A2兩點,在軌跡E上任取一點Q(x,y)(y≠0),直線QA1,QA2分別交y軸于D,E兩點,求證:以線段DE為直徑的圓C過兩個定點,并求出定點坐標.

查看答案和解析>>

同步練習冊答案