【題目】已知函數(shù)f(x)=sin(x﹣φ),且 f(x)dx=0,則函數(shù)f(x)的圖象的一條對稱軸是(
A.x=
B.x=
C.x=
D.x=

【答案】A
【解析】解:∵函數(shù)f(x)=sin(x﹣φ),
f(x)dx=﹣cos(x﹣φ) =﹣cos( ﹣φ)﹣[﹣cos(﹣φ)]= cosφ﹣ sinφ= cos(φ+ )=0,
∴φ+ =kπ+ ,k∈z,即 φ=kπ+ ,k∈z,故可取φ= ,f(x)=sin(x﹣ ).
令x﹣ =kπ+ ,求得 x=kπ+ ,k∈Z,
則函數(shù)f(x)的圖象的一條對稱軸為 x= ,
故選:A.
f(x)dx=0求得 cos(φ+ )=0,故有 φ+ =kπ+ ,k∈z.可取φ= ,則f(x)=sin(x﹣ ).
令x﹣ =kπ+ ,求得x的值,可得函數(shù)f(x)的圖象的一條對稱軸方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),(

(1)當時,求函數(shù)處的切線方程;

(2)若函數(shù)在區(qū)間上單調遞增,求的取值范圍;

(3)求函數(shù)在區(qū)間的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】東莞市某高級中學在今年4月份安裝了一批空調,關于這批空調的使用年限(單位:年, )和所支出的維護費用(單位:萬元)廠家提供的統(tǒng)計資料如下:

(1)請根據以上數(shù)據,用最小二乘法原理求出維護費用關于的線性回歸方程;

(2)若規(guī)定當維護費用超過13.1萬元時,該批空調必須報廢,試根據(1)的結論預測該批空調使用年限的最大值.

參考公式:最小二乘估計線性回歸方程中系數(shù)計算公式:

, ,其中表示樣本均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若圓經過點(2,0),(0,4),(0,2)求:
(1)圓的方程
(2)圓的圓心和半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 為實常數(shù).

(),當時,求函數(shù)的單調區(qū)間;

()時,直線與函數(shù)、的圖象一共有四個不同的交點,且以此四點為頂點的四邊形恰為平行四邊形.

求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產甲、乙兩種桶裝產品.已知生產甲產品1桶需耗原料1千克、原料2千克;生產乙產品1桶需耗原料2千克, 原料1千克.每桶甲產品的利潤是300元,每桶乙產品的利潤是400元.公司在生產這兩種產品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產計劃,從每天生產的甲、乙兩種產品中,公司共可獲得的最大利潤是__________元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,四邊形是菱形,,二面角 .

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產品的廣告費用x與銷售額y的統(tǒng)計數(shù)據如表:

廣告費用x(萬元)

4

2

3

5

銷售額y(萬元)

49

26

39

54

根據上表可得回歸方程 = x+ 中的 為9.4,據此模型預報廣告費用為6萬元時銷售額為(
A.63.6萬元
B.67.7萬元
C.65.5萬元
D.72.0萬元

查看答案和解析>>

同步練習冊答案