設(shè)等差數(shù)列的前n項(xiàng)和為Sn,若a1=-15,  a3+a5= -18,則當(dāng)Sn取最小值時n等于(  )
A.9 B.8 C.7D.6
B

試題分析:根據(jù)等差數(shù)列的性質(zhì)化簡a3+a5=-18,得到a4的值,然后根據(jù)a1的值,利用等差數(shù)列的通項(xiàng)公式即可求出公差d的值,根據(jù)a1和d的值寫出等差數(shù)列的通項(xiàng)公式,進(jìn)而寫出等差數(shù)列的前n項(xiàng)和公式Sn,配方后即可得到Sn取最小值時n的值.解:由等差數(shù)列的性質(zhì)可得 a3+a5=2a4=-18,解得a4=-9. 又a1=-15,設(shè)公差為d,所以,a4=a1+3d=-15+3d=-9,解得d="2" .則an=-15+2(n-1)=2n-17,那么可知所以a8<0, a9>0,當(dāng)n=8時,Sn取最小值.故選B.
點(diǎn)評:此題考查學(xué)生靈活運(yùn)用等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式化簡求值,掌握等差數(shù)列的性質(zhì),是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且對任意正整數(shù),點(diǎn)都在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若設(shè)求數(shù)列項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列的前項(xiàng)和為且滿足,,則中最大的項(xiàng)為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)= m·log2x + t的圖象經(jīng)過點(diǎn)A(4,1)、點(diǎn)B(16,3)及點(diǎn)C(Sn,n),其中Sn為數(shù)列{an}的前n項(xiàng)和,n∈N*.
(Ⅰ)求Sn和an
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn , bn = f(an) – 1, 求不等式Tn£ bn的解集,n∈N*.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列是首項(xiàng)的等比數(shù)列,且,,成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,設(shè)為數(shù)列的前項(xiàng)和,若對一切
成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中,已知,那么等于         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的前項(xiàng)和.數(shù)列滿足:.
(1)求的通項(xiàng).并比較的大小;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列是等差數(shù)列,是等比數(shù)列,且,
(Ⅰ)求數(shù)列的通項(xiàng)公式
(Ⅱ)數(shù)列滿足,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列是等差數(shù)列,若,則數(shù)列的公差等于
A.1B.3C.5 D.6

查看答案和解析>>

同步練習(xí)冊答案