過(guò)雙曲線
x2
3
-y2=1
的右焦點(diǎn)F2,作傾斜角為
π
4
的直線交雙曲線于A、B兩點(diǎn),
求:(1)|AB|的值;
(2)△F1AB的周長(zhǎng)(F1為雙曲線的左焦點(diǎn)).
(1)由雙曲線方程
x2
3
-y2=1
可得a=
3
,b=1

又由c2=a2+b2,得c=2,F(xiàn)2(2,0)
所以直線AB的方程為:y=x-2
設(shè)A(x1y1)、B(x2y2)
y=x-2
x2
3
-y2=1
消去y得2x2-12x+15=0
x1+x2=6,x1x2=
15
2
由弦長(zhǎng)公式|AB|=
1+k2
(x1+x2)2-4x1x2
,得
|AB|=
1+12
62-4×
15
2
=2
3

(2)如圖,由雙曲線定義得:
|AF1|=|AF2|+2a,
|BF1|=|BF2|+2a
∴△F1AB的周長(zhǎng)=|AF1|+|BF1|+|AB|
=|AF1|+|BF2|+4×
3
+|AB|
=2|AB|+4
3
=8
3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線的兩條漸近線方程為直線l1:y=-
x
2
l2:y=
x
2
,焦點(diǎn)在y軸上,實(shí)軸長(zhǎng)為2
3
,O為坐標(biāo)原點(diǎn).
(1)求雙曲線方程;
(2)設(shè)P1,P2分別是直線l1和l2上的點(diǎn),點(diǎn)M在雙曲線上,且
P1M
=2
MP2
,求三角形P1OP2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓
x2
8
+
y2
4
=1
上的點(diǎn)到直線x-y+6=0的距離的最小值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的兩焦點(diǎn)分別為F1(-2
2
,0)、F2(2
2
,0),長(zhǎng)軸長(zhǎng)為6,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A、B兩點(diǎn),求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)P是橢圓16x2+25y2=1600上一點(diǎn),且在x軸上方,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),直線PF2的斜率為-4
3
,則△PF1F2的面積為( 。
A.32
3
B.24
3
C.32
2
D.24
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線y=kx與雙曲線
x2
a2
-
y2
b2
=1
的左右兩支都有交點(diǎn)的充要條件是k∈(-1,1),且該雙曲線與直線y=
1
2
x-
3
2
相交所得弦長(zhǎng)為
4
15
3
,則該雙曲線方程為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線y2=2px(p>0)的焦點(diǎn)F與雙曲
x2
4
-
y2
5
=1
的右焦點(diǎn)重合,拋物線的準(zhǔn)線與x軸的交點(diǎn)為K,點(diǎn)A在拋物線上且|AK|=
2
|AF|
,則A點(diǎn)的橫坐標(biāo)為( 。
A.2
2
B.3C.2
3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三角形△ABC的兩頂點(diǎn)為B(-2,0),C(2,0),它的周長(zhǎng)為10,求頂點(diǎn)A軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)等于12,離心率為
1
3

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在橢圓上任取一點(diǎn)P,過(guò)P點(diǎn)做y軸垂線段PQ,Q為垂足,當(dāng)P在橢圓上運(yùn)動(dòng)時(shí),求線段PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案