直線(xiàn)y=kx與雙曲線(xiàn)
x2
a2
-
y2
b2
=1
的左右兩支都有交點(diǎn)的充要條件是k∈(-1,1),且該雙曲線(xiàn)與直線(xiàn)y=
1
2
x-
3
2
相交所得弦長(zhǎng)為
4
15
3
,則該雙曲線(xiàn)方程為_(kāi)_____.
∵直線(xiàn)y=kx與雙曲線(xiàn)
x2
a2
-
y2
b2
=1
的左右兩支都有交點(diǎn)的充要條件是k∈(-1,1),
b
a
=1

設(shè)雙曲線(xiàn)的方程為x2-y2=m.
聯(lián)立
x-2y-3=0
x2-y2=m
,化為3y2+12y+9-m=0.
∵直線(xiàn)與雙曲線(xiàn)有兩個(gè)交點(diǎn),∴△=122-12(9-m)>0,解得m>-3.
∴y1+y2=-4,y1y2=3-
m
3

(1+4)[(y1+y2)2-4y1y2]
=
5[42-4×(3-
m
3
)]
=
4
15
3
,
化為m=1.滿(mǎn)足△>0.
因此雙曲線(xiàn)的方程為:x2-y2=1.
故答案為:x2-y2=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓C上一動(dòng)點(diǎn),點(diǎn)P在線(xiàn)段AM上,點(diǎn)N在線(xiàn)段CM上,且滿(mǎn)足
AM
=2
AP
NP
AM
=0
,點(diǎn)N的軌跡為曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)若過(guò)定點(diǎn)F(0,2)的直線(xiàn)交曲線(xiàn)E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿(mǎn)足
FG
FH
,求λ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)所作直線(xiàn)中,被拋物線(xiàn)截得弦長(zhǎng)為8的直線(xiàn)有( 。
A.1條B.2條C.3條D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,直線(xiàn)x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線(xiàn)l:y=x+m(m∈R)與橢圓M有兩個(gè)不同的交點(diǎn)P,Q,l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T.求
|PQ|
|ST|
的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)雙曲線(xiàn)
x2
3
-y2=1
的右焦點(diǎn)F2,作傾斜角為
π
4
的直線(xiàn)交雙曲線(xiàn)于A(yíng)、B兩點(diǎn),
求:(1)|AB|的值;
(2)△F1AB的周長(zhǎng)(F1為雙曲線(xiàn)的左焦點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)p(x,y)(x≥0)滿(mǎn)足:點(diǎn)p到定點(diǎn)F(
1
2
,0)與到y(tǒng)軸的距離之差為
1
2
.記動(dòng)點(diǎn)p的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的軌跡方程;
(2)過(guò)點(diǎn)F的直線(xiàn)交曲線(xiàn)C于A(yíng)、B兩點(diǎn),過(guò)點(diǎn)A和原點(diǎn)O的直線(xiàn)交直線(xiàn)x=-
1
2
于點(diǎn)D,求證:直線(xiàn)DB平行于x軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線(xiàn)與橢圓
x2
27
+
y2
36
=1
有相同焦點(diǎn),且經(jīng)過(guò)點(diǎn)(
15
,4)
,則雙曲線(xiàn)的方程為( 。
A.
x2
4
-
y2
5
=1
B.
y2
5
-
x2
4
=1
C.
y2
4
-
x2
5
=1
D.
x2
5
-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的方程為:
x2
a2
+
y2
b2
=1(a>b>0)
,其中a2=4c,直線(xiàn)l:3x-2y=0與橢圓的交點(diǎn)在x軸上的射影恰為橢圓的焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)l與橢圓在x軸上方的一個(gè)交點(diǎn)為P,F(xiàn)是橢圓的右焦點(diǎn),試探究以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A、B分別是橢圓的右頂點(diǎn)與上頂點(diǎn),橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2

(Ⅰ)求橢圓W的方程;
(Ⅱ)對(duì)于x軸上的點(diǎn)P(t,0),橢圓W上存在點(diǎn)Q,使得PQ⊥AQ,求實(shí)數(shù)t的取值范圍;
(Ⅲ)直線(xiàn)l:y=kx+m(k≠0)與橢圓W交于不同的兩點(diǎn)M、N(M、N異于橢圓的左右頂點(diǎn)),若以MN為直徑的圓過(guò)橢圓W的右頂點(diǎn)A,求證:直線(xiàn)l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案