如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長度之比為1:3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),線段AB的中點(diǎn)M在直線l上.

(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍.
(Ⅰ); (Ⅱ)[).

試題分析:(Ⅰ)由題意比例關(guān)系先求c,再由離心率求a,從而可求橢圓的方程;(Ⅱ)分直線AB斜率是否存在兩種情況討論:(1)當(dāng)直線AB垂直于x軸時(shí),易求;(2)當(dāng)直線AB不垂直于x軸時(shí),先設(shè)直線AB的斜率,點(diǎn)M、A、B的坐標(biāo),把點(diǎn)A、B坐標(biāo)代入橢圓方程求k、m之間的關(guān)系,再求PQ直線方程,然后與橢圓方程聯(lián)立方程組,由韋達(dá)定理求的表達(dá)式,最后求其范圍.
試題解析:(Ⅰ) 設(shè)F2(c,0),則,所以c=1.
因?yàn)殡x心率e=,所以a=
所以橢圓C的方程為.                     6分

(Ⅱ)當(dāng)直線AB垂直于x軸時(shí),直線AB方程為x=-,此時(shí)P(,0)、Q(,0)

當(dāng)直線AB不垂直于x軸時(shí),設(shè)直線AB的斜率為k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
 得(x1+x2)+2(y1+y2)=0,則-1+4mk=0,故k=
此時(shí),直線PQ斜率為,PQ的直線方程為.即
聯(lián)立 消去y,整理得
所以,
于是(x1-1)(x2-1)+y1y2


令t=1+32m2,1<t<29,則
又1<t<29,所以
綜上,的取值范圍為[,). 15分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn)及直線,曲線是滿足下列兩個(gè)條件的動(dòng)點(diǎn)的軌跡:①其中到直線的距離;②
(1) 求曲線的方程;
(2) 若存在直線與曲線、橢圓均相切于同一點(diǎn),求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右頂點(diǎn)分別為、,離心率.過該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長線上,且.
(1)求橢圓的方程;
(2)求動(dòng)點(diǎn)C的軌跡E的方程;
(3)設(shè)直線MN過橢圓的右焦點(diǎn)與橢圓相交于M、N兩點(diǎn),且,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中,點(diǎn)A、B的坐標(biāo)分別為,點(diǎn)C在x軸上方。
(1)若點(diǎn)C坐標(biāo)為,求以A、B為焦點(diǎn)且經(jīng)過點(diǎn)C的橢圓的方程;
(2)過點(diǎn)P(m,0)作傾角為的直線交(1)中曲線于M、N兩點(diǎn),若點(diǎn)Q(1,0)恰在以線段MN為直徑的圓上,求實(shí)數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長為4,且有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過定點(diǎn)M(2,0)且斜率不為0的直線交橢圓C于A、B兩點(diǎn),試問在x軸上是否另存在一個(gè)定點(diǎn)P使得始終平分?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

)如圖,橢圓,、、、為橢圓的頂點(diǎn)

(Ⅰ)若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為,求橢圓方程;
(Ⅱ)已知:直線相交于兩點(diǎn)(不是橢圓的左右頂點(diǎn)),并滿足 試研究:直線是否過定點(diǎn)? 若過定點(diǎn),請求出定點(diǎn)坐標(biāo),若不過定點(diǎn),請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓交于兩點(diǎn),若弦的中點(diǎn)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,若焦點(diǎn)在軸上的橢圓 過點(diǎn),且其長軸長等于圓的直徑.
(1)求橢圓的方程;
(2)過點(diǎn)作兩條互相垂直的直線,與圓交于、兩點(diǎn),交橢圓于另一點(diǎn),設(shè)直線的斜率為,求弦長;
(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,若橢圓的右頂點(diǎn)為圓的圓心,離心率為.
(1)求橢圓的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案