【題目】已知件次品和件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出件次品或者檢測出件正品時(shí)檢測結(jié)束.

1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2)已知每檢測一件產(chǎn)品需要費(fèi)用元,設(shè)表示直到檢測出件次品或者檢測出件正品時(shí)所需要的檢測費(fèi)用(單位:元),求的分布列.

【答案】1;(2)見解析.

【解析】

1)利用獨(dú)立事件的概率乘法公式可計(jì)算出所求事件的概率;

2)由題意可知隨機(jī)變量的可能取值有、,計(jì)算出隨機(jī)變量在不同取值下的概率,由此可得出隨機(jī)變量的分布列.

1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件,則;

2)由題意可知,隨機(jī)變量的可能取值為、、

,,

的分布列為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,底面正方形的對角線交于點(diǎn)

1)求直線與平面所成角的正弦值;

2)求銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)e為自然對數(shù)的底數(shù))時(shí),

i)若上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍;

ii)若),求上的最大值;

2)當(dāng)時(shí),,,數(shù)列滿足.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線Cy2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為lAB為過焦點(diǎn)F且垂直于x軸的拋物線C的弦,已知以AB為直徑的圓經(jīng)過點(diǎn)(-10).

1)求p的值及該圓的方程;

2)設(shè)Ml上任意一點(diǎn),過點(diǎn)MC的切線,切點(diǎn)為N,證明:MFNF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,.

(Ⅰ)求證:平面

(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是自然對數(shù)的底數(shù))

(Ⅰ) 設(shè)(其中的導(dǎo)數(shù)),求的極小值;

(Ⅱ) 若對,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為,為橢圓C上一點(diǎn).

1)求橢圓C的方程;

2)設(shè)橢圓C的左、右頂點(diǎn)分別為,,過,分別作x軸的垂線,,橢圓C的一條切線,交于MN兩點(diǎn),求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線切于點(diǎn),直線過定點(diǎn)Q,且拋物線上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為.

1)求拋物線的方程及點(diǎn)的坐標(biāo);

2)設(shè)直線與拋物線交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)A、B,直線PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,離心率為,直線恒過的一個(gè)焦點(diǎn).

1)求的標(biāo)準(zhǔn)方程;

2)設(shè)為坐標(biāo)原點(diǎn),四邊形的頂點(diǎn)均在上,交于,且,若直線的傾斜角的余弦值為,求直線軸交點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案