【題目】東亞運(yùn)動(dòng)會(huì)將于2013106日在天津舉行.為了搞好接待工作,組委會(huì)打算學(xué)習(xí)北京奧運(yùn)會(huì)招募大量志愿者的經(jīng)驗(yàn),在某學(xué)院招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男女志愿者中分別有10人和6人喜愛運(yùn)動(dòng),其余人不喜歡運(yùn)動(dòng).

(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:

喜愛運(yùn)動(dòng)

不喜愛運(yùn)動(dòng)

總計(jì)

10

16

6

14

總計(jì)

30

(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為性別與喜愛運(yùn)動(dòng)有關(guān)?

(3)如果從喜歡運(yùn)動(dòng)的女志愿者中(其中恰有4人會(huì)外語),抽取2名負(fù)責(zé)翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?

參考公式:K2,其中

nabcd.

參考數(shù)據(jù):

P(K2k)

0.40

0.25

0.10

0.010

k

0.708

1.323

2.706

6.635

【答案】(1)見解析;(2)不能;(3)

【解析】試題分析:

(1)利用總數(shù)和喜愛運(yùn)動(dòng)人數(shù)可求得不喜愛運(yùn)動(dòng)人數(shù),從而得出喜愛運(yùn)動(dòng)、不喜愛運(yùn)動(dòng)總?cè)藬?shù);

(2)利用公式計(jì)算出可得結(jié)論;

(3)從6人中選2人,至少有1人勝任翻譯工作的對(duì)立事件是沒有1人勝任翻譯工作,可把6人編號(hào),寫出選2人的所有可能,從中得出不勝任翻譯的選法數(shù),利用對(duì)立事件概率公式可計(jì)算概率.

試題解析:

 (1)

喜愛運(yùn)動(dòng)

不喜愛運(yùn)動(dòng)

總計(jì)

10

6

16

6

8

14

總計(jì)

16

14

30

(2)根據(jù)已知數(shù)據(jù)可求得:

K2≈1.157 5<2.706,

因此,在犯錯(cuò)誤的概率不超過0.10的前提下不能判斷喜愛運(yùn)動(dòng)與性別有關(guān).

(3)喜歡運(yùn)動(dòng)的女志愿者有6人,設(shè)喜歡運(yùn)動(dòng)的女志愿者分別為A,BCD,E,F,其中A,B,C,D會(huì)外語,則從這6人中任取2人,共15種取法.其中兩人都不會(huì)外語的只有EF一種取法.故抽出的志愿者之中至少有1人能勝任翻譯工作的概率是P1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用長(zhǎng)為,寬為的長(zhǎng)方形鐵皮做一個(gè)無蓋的容器.先在四角分別截去一個(gè)小正方形,然后把四邊翻轉(zhuǎn),再焊接而成(如圖).問該容器的高為多少時(shí),容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),,

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),的兩個(gè)極值點(diǎn)為).

證明:;

恰為的零點(diǎn),的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究教學(xué)方式對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).

(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;

(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷有多大把握認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān)

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

span>2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,正三角形的邊長(zhǎng)為4,邊上的高,,分別是邊的中點(diǎn),現(xiàn)將△沿翻折成直二面角,如圖

(1)判斷直線與平面的位置關(guān)系,并說明理由;

(2)求棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的A,B,C三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).

(1)設(shè)生產(chǎn)A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產(chǎn)需要的時(shí)間;

(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是單調(diào)減函數(shù),若將方程分別稱為函數(shù)的不動(dòng)點(diǎn)與穩(wěn)定點(diǎn).則的不動(dòng)點(diǎn)的穩(wěn)定點(diǎn)的 ( 。

A.充要條件        B.充分不必要條件  

C.必要不充分條件      D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項(xiàng),.

(1)證明:數(shù)列是等比數(shù)列;

(2)求數(shù)列的前項(xiàng)和為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N。

(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說明理由);

(2)證明:直線MN∥平面BDH;

(3)過點(diǎn)M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.

查看答案和解析>>

同步練習(xí)冊(cè)答案