【題目】已知是單調(diào)減函數(shù),若將方程與的解分別稱為函數(shù)的不動(dòng)點(diǎn)與穩(wěn)定點(diǎn).則“是的不動(dòng)點(diǎn)”是“是的穩(wěn)定點(diǎn)”的 ( 。
A.充要條件 B.充分不必要條件
C.必要不充分條件 D.既不充分也不必要條件
【答案】B
【解析】欲判斷”x是f(x)的不動(dòng)點(diǎn)”是“x是f(x)的穩(wěn)定點(diǎn)”的什么條件,只須從兩個(gè)方面考慮:一方面:若x是f(x)的不動(dòng)點(diǎn),看能不能推出“x是f(x)的穩(wěn)定點(diǎn)“;另一方面:”x是f(x)的穩(wěn)定點(diǎn)“能不能推出“x是f(x)的不動(dòng)點(diǎn)“.
解:一方面:若x是f(x)的不動(dòng)點(diǎn),
則f(x)=x,即函數(shù)y=f(x)與直線y=x的交點(diǎn)的橫坐標(biāo)為x,
因?yàn)樵瘮?shù)與反函數(shù)的圖象一定要關(guān)于直線y=x對(duì)稱,
故反函數(shù)的圖象一定要過函數(shù)y=f(x)與直線y=x的橫坐標(biāo)為x交點(diǎn),
即f(x)=f-1(x)的解是x,
故”x是f(x)的不動(dòng)點(diǎn)“x是f(x)的穩(wěn)定點(diǎn)“;
另一方面:x是f(x)的穩(wěn)定點(diǎn),
即f(x)=f-1(x),即函數(shù)y=f(x)與y=f-1(x)的交點(diǎn)的橫坐標(biāo)為x,
因?yàn)樵瘮?shù)與反函數(shù)的圖象的交點(diǎn)不一定在直線y=x上,
故原函數(shù)的圖象不一定要過函數(shù)y=f(x)與反函數(shù)的圖象的交點(diǎn),
即x不一定是方程f(x)=f-1(x)的解
故”x是f(x)的穩(wěn)定點(diǎn)“不能”x是f(x)的不動(dòng)點(diǎn)“
則x“是f(x)的不動(dòng)點(diǎn)”是“x是f(x)的穩(wěn)定點(diǎn)”的“充分不必要條件.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱形與正三角形的邊長(zhǎng)均為2,它們所在平面互相垂直, ,且.
(1)求證: ;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中放有的黑球和白球,其中黑球4個(gè),白球5個(gè).
(1)從盒中同時(shí)摸出兩個(gè)球,求兩球顏色恰好相同的概率.
(2)從盒中摸出一個(gè)球,放回后再摸出一個(gè)球,求兩球顏色恰好不同的概率.
(3)從盒中不放回的每次摸一球,若取到白球則停止摸球,求取到第三次時(shí)停止摸球的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東亞運(yùn)動(dòng)會(huì)將于2013年10月6日在天津舉行.為了搞好接待工作,組委會(huì)打算學(xué)習(xí)北京奧運(yùn)會(huì)招募大量志愿者的經(jīng)驗(yàn),在某學(xué)院招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男女志愿者中分別有10人和6人喜愛運(yùn)動(dòng),其余人不喜歡運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜愛運(yùn)動(dòng) | 不喜愛運(yùn)動(dòng) | 總計(jì) | |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計(jì) | 30 |
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為性別與喜愛運(yùn)動(dòng)有關(guān)?
(3)如果從喜歡運(yùn)動(dòng)的女志愿者中(其中恰有4人會(huì)外語),抽取2名負(fù)責(zé)翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
參考公式:K2=,其中
n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k) | 0.40 | 0.25 | 0.10 | 0.010 |
k | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知()的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱。
(1)求的值,并求出函數(shù)的零點(diǎn);
(2)若函數(shù)在內(nèi)存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)設(shè),若不等式在上恒成立,求滿足條件的最小整數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)如今,“網(wǎng)購”一詞不再新鮮,越來越多的人已經(jīng)接受并喜歡了這種購物方式,但隨之也出現(xiàn)了商品質(zhì)量不能保證與信譽(yù)不好等問題,因此,相關(guān)管理部門制定了針對(duì)商品質(zhì)量與服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出成功交易200例,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì):對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)依據(jù)題中的數(shù)據(jù)完成下表:
(2)通過計(jì)算說明,能否有99.9%的把握認(rèn)為“商品好評(píng)與服務(wù)好評(píng)”有關(guān);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿足f(x)=f(x+3),f(-2)=-3.若數(shù)列{an}中,a1=-1,且前n項(xiàng)和Sn滿足=2×+1,則f(a5)+f(a6)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開”政策的支持度有差異;
(2)若對(duì)年齡在的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.且曲線的左焦點(diǎn)在直線上.
(1)若直線與曲線交于兩點(diǎn),求的值;
(2)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com