【題目】一盒中放有的黑球和白球,其中黑球4個,白球5個.

(1)從盒中同時摸出兩個球,求兩球顏色恰好相同的概率.

(2)從盒中摸出一個球,放回后再摸出一個球,求兩球顏色恰好不同的概率.

(3)從盒中不放回的每次摸一球,若取到白球則停止摸球,求取到第三次時停止摸球的概率

【答案】(1);(2);(3)

【解析】試題分析:

1)總方法數(shù)是,兩球顏色恰好相同,可以是同為黑色,也可能是同為白色,即分為兩類可得方法數(shù);

(2)有放回取兩球的總方法數(shù)為,兩球顏色恰好不同,可分兩類,第一類是第一個球黑色第二個球白色,方法數(shù)有,第二類是第一個球白色第二個球黑色,方法數(shù)有

(3)取到第三次時停止摸球是第三次摸到白球,前兩次摸到的是黑球.

試題解析:

(1)

(2)

(3)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數(shù)列.

(Ⅰ)求{an}的通項(xiàng)公式an與前n項(xiàng)和公式Sn;

(Ⅱ)令bn= (k<0),若{bn}是等差數(shù)列,求數(shù)列{}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,兩焦點(diǎn),點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)如圖,動直線與橢圓有且僅有一個公共點(diǎn),點(diǎn)、是直線上的兩點(diǎn),且.求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),,

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)的兩個極值點(diǎn)為,).

證明:

,恰為的零點(diǎn),的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求曲線公共弦的長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究教學(xué)方式對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.

(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;

(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷有多大把握認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

span>2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,正三角形的邊長為4,邊上的高,分別是邊的中點(diǎn),現(xiàn)將△沿翻折成直二面角,如圖

(1)判斷直線與平面的位置關(guān)系并說明理由;

(2)求棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是單調(diào)減函數(shù),若將方程分別稱為函數(shù)的不動點(diǎn)與穩(wěn)定點(diǎn).則的不動點(diǎn)的穩(wěn)定點(diǎn)的 ( 。

A.充要條件        B.充分不必要條件  

C.必要不充分條件      D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓 ()的離心率是,過點(diǎn)(,)的動直線與橢圓相交于,兩點(diǎn),當(dāng)直線平行于軸時,直線被橢圓截得的線段長為

求橢圓的方程:

已知為橢圓的左端點(diǎn),: 是否存在直線使得的面積為?若不存在,說明理由,若存在,求出直線的方程

查看答案和解析>>

同步練習(xí)冊答案