分析:(I)先求f(x)的定義域?yàn)閧x|x>0},先對(duì)已知函數(shù)進(jìn)行求導(dǎo),由f'(2)=2-a-1+
=
,可求a;
(II)由f'(x)=x-a-1+
=
(x>0),通過(guò)比較1與2a的大小解不等式f'(x)>0,f'(x)<0,從而可求函數(shù)的單調(diào)區(qū)間;
(III)把判斷方程f(x)=m何時(shí)有三個(gè)不同的實(shí)數(shù)根的問(wèn)題,轉(zhuǎn)化為研究函數(shù)的零點(diǎn)問(wèn)題,通過(guò)導(dǎo)數(shù)得到函數(shù)的極值,把函數(shù)的極值同m進(jìn)行比較,得到結(jié)果.
解答:解:(I)由已知可知f(x)的定義域?yàn)閧x|x>0}
f'(x)=x-a-1+
(x>0)
根據(jù)題意可得,f'(2)=2-a-1+
=
,
∴a=-1.
(II)∵f'(x)=x-a-1+
=
(x>0)
①當(dāng)a>1時(shí),由f′(x)>0可得x>a或0<x<1;
由f′(x)<0可得0<x<2a
∴f(x)在(2a,+∞)上單調(diào)遞增,在(0,2a)上單調(diào)遞減
②當(dāng)0<a<1時(shí),由f′(x)>0可得x>1或0<x<a;
③當(dāng)a=1時(shí),在區(qū)間(0,+∞)上f′(x)≥0恒成立.
∴當(dāng)a>1時(shí),f(x)在(0,1),(a,+∞)上單調(diào)遞增,在(1,a)上單調(diào)遞減;
當(dāng)0<a<1時(shí),f(x)在(0,a),(1,+∞)上單調(diào)遞增,在(a,1)上單調(diào)遞減;
當(dāng)a=1時(shí),f(x)在(0,+∞)上單調(diào)遞增.
當(dāng)a≤0時(shí),f(x)在(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.
(III)當(dāng)a=2時(shí),f(x)=
x2-3x+2lnx,
由(II)問(wèn)知,f(x)在(0,1),(2,+∞)上單調(diào)遞增,在(1,2)上單調(diào)遞減;
∴f(x)的極大值為f(1)=-
,f(x)的極小值為f(2)=2ln2-4,
當(dāng)m∈(2ln2-4,-
),函數(shù)方程f(x)=m在(0,+∞)上有三個(gè)不同的實(shí)數(shù)根,
因此實(shí)數(shù)m的取值范圍是(2ln2-4,-
).