【題目】已知函數(shù)

(1)若函數(shù)上為增函數(shù),求正實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),求函數(shù)上的最值;

(3)當(dāng)時(shí),對(duì)大于1的任意正整數(shù),試比較的大小關(guān)系.

【答案】(1);(2)函數(shù)在區(qū)間上的最大值是,最小值是0;(3)見(jiàn)解析.

【解析】

(1)先求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出的范圍即可;
(2)將代入,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值;
(3)求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,令 ,得到 ,從而證出結(jié)論.

(1)因?yàn)?/span>,所以

因?yàn)楹瘮?shù)上為增函數(shù),所以對(duì)恒成立,

所以對(duì)恒成立,即對(duì)恒成立,所以.

(2)當(dāng)時(shí),,所以當(dāng)時(shí),,故上單調(diào)遞減;當(dāng),,故上單調(diào)遞增,所以在區(qū)間上有唯一極小值點(diǎn),故,又,,,

因?yàn)?/span>,所以,即

所以在區(qū)間上的最大值是

綜上可知,函數(shù)在區(qū)間上的最大值是,最小值是0.

(3)當(dāng)時(shí),,,故上為增函數(shù).

當(dāng)時(shí),令,則,故

所以,即>

當(dāng)時(shí),對(duì)大于1的任意正整數(shù),有 >

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表.

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

總計(jì)

105

已知在全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為.

(1)請(qǐng)完成上面的列聯(lián)表;(把列聯(lián)表自己畫(huà)到答題卡上)

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為成績(jī)與班級(jí)有關(guān)系”?

參考公式:

P(K2k0)

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有如下問(wèn)題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問(wèn):米幾何?”如圖所示的是解決該問(wèn)題的程序框圖,執(zhí)行該程序框圖,若輸出的(單位:升),則輸入的值為( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐S—ABCD的底面是正方形,側(cè)棱SA⊥底面ABCD,

過(guò)A作AE垂直SB交SB于E點(diǎn),作AH垂直SD交SD于H點(diǎn),平面AEH交SC于K點(diǎn),且AB=1,SA=2.

(1)證明E、H在以AK為直徑的圓上,且當(dāng)點(diǎn)P是SA上任一點(diǎn)時(shí),試求的最小值;

(2)求平面AEKH與平面ABCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的展開(kāi)式中,第二、三、四項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列

1的值;

2此展開(kāi)式中是否有常數(shù)項(xiàng),為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線過(guò)點(diǎn),傾斜角為. 以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).

(1)求直線的參數(shù)方程(設(shè)參數(shù)為)和曲線的普通方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一袋中裝有6個(gè)黑球,4個(gè)白球.如果不放回地依次取出2個(gè)球.求:

(1)第1次取到黑球的概率;

(2)第1次和第2次都取到黑球的概率;

(3)在第1次取到黑球的條件下,第2次又取到黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,最小值為4的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C: =1(a>b>0)的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,且與橢圓x2+ =1有相同離心率,直線l:y=kx+m與橢圓C交于不同的A,B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點(diǎn)Q,滿足 ,(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案