【題目】在平面直角坐標系xOy中,已知橢圓C:的離心率,F1,F2分別為左、右焦點,過F1的直線交橢圓C于P,Q兩點,且的周長為8.
(1)求橢圓c的方程;
(2)設過點M(3,0)的直線交橢圓C于不同兩點A,B,N為橢圓上一點,且滿足(O為坐標原點),當時,求實數t的取值范圍.
【答案】(1);(2)
【解析】
(1)利用已知條件,求出a,b,即可得到橢圓方程;(2)設A(x1,y1),B(x2,y2),N(x,y),AB的方程為y=k(x﹣3),聯立直線和橢圓,整理得(1+4k2)x2﹣24k2x+36k2﹣4=0.利用判別式以及韋達定理,結合=t(x,y),求出N的坐標,代入橢圓方程,利用弦長公式,化簡不等式,求出K的范圍,然后求解t的范圍.
(1)∵,∴.
又∵,∴,∴,∴橢圓的方程是.
(2)設,,,的方程為,
由,整理得.
由,得.
∵,,
∴ ,
則, .
由點在橢圓上,得,化簡得. ①
又由,即,
將,代入得,
化簡,得,則,,∴. ②
由①,得,聯立②,解得.
∴或,即.
科目:高中數學 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:
以這100臺機器更換的易損零件數的頻率代替1臺機器更換的易損零件數發(fā)生的概率,記X表示2臺機器三年內共需更換的易損零件數,n表示購買2臺機器的同時購買的易損零件數.
(1)求X的分布列;
(2)若要求P(X≤n)≤0.5,確定n的最小值;
(3)以購買易損零件所需費用的期望值為決策依據,在n=19與n=20之中選其一,應選用哪個?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學團委組織了“弘揚奧運精神,愛我中華”的知識競賽,從參加考試的學生中抽出60名學生,將其成績(均為整數)分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是[40,50)和[90,100]的學生中選兩人,求他們在同一分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線y2=2px(p>0)與直線y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是拋物線上兩個動點,F為拋物線的焦點,且|AF|+|BF|=8.
(1)求p的值.
(2)線段AB的垂直平分線l與x軸的交點是否為定點?若是,求出交點坐標;若不是,說明理由.
(3)求直線l的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3+ax2+bx+1的導數滿足,其中常數a,b∈R.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設,求函數g(x)的極值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓=1(a>b>0)的左、右焦點分別為F1,F2,短軸兩個端點為A,B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓的方程;
(2)若C,D分別是橢圓的左、右端點,動點M滿足MD⊥CD,連接CM,交橢圓于點P.證明:為定值.
(3)在(2)的條件下,試問x軸上是否存在異于點C的定點Q,使得以MP為直徑的圓恒過直線DP,MQ的交點?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,設a∈R,若關于x的不等式f(x)≥| +a|在R上恒成立,則a的取值范圍是( 。
A.[﹣ ,2]
B.[﹣ , ]
C.[﹣2 ,2]
D.[﹣2 , ]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=excosx﹣x.(13分)
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數f(x)在區(qū)間[0, ]上的最大值和最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com