復(fù)數(shù)z=
1-i
2+i
在復(fù)平面上對應(yīng)的點的坐標(biāo)為( 。
A、(1,-3)
B、(
1
5
,-
3
5
C、(3,-3)
D、(
3
5
,-
3
5
考點:復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接由復(fù)數(shù)的除法運算化簡復(fù)數(shù)z為a+bi(a,b∈R)的形式,求得實部和虛部,則復(fù)數(shù)z對應(yīng)的點的坐標(biāo)可求.
解答: 解:由復(fù)數(shù)z=
1-i
2+i
=
(1-i)(2-i)
(2+i)(2-i)
=
1-3i
5
=
1
5
-
3
5
i

∴復(fù)數(shù)z=
1-i
2+i
在復(fù)平面上對應(yīng)的點的坐標(biāo)為(
1
5
,-
3
5
).
故選:B.
點評:本題考查了復(fù)數(shù)的除法運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,以下四個命題:
①若α⊥β,m⊥α,則m∥β;   
②若α⊥γ,β⊥γ,則α∥β;
③若m⊥α,n∥m,則n⊥α;    
④若m∥α,n∥α,則m∥n.
其中正確命題的序號是
 
.(將正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“λ<0”是“數(shù)列an=n2-2λn(n∈N*)為遞增數(shù)列”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為奇函數(shù),且當(dāng)x<0時,f(x)=x2+2x,則f(1)=( 。
A、1B、-1C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足不等式組
x+2y-2≥0
x-y-1≤0
x-2y+2≥0
,則x+y的最大值為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四面體ABCD中,已知AB=x,該四面體的其余五條棱的長度均為2,則下列說法中錯誤的是(  )
A、棱長x的取值范圍是:0<x<2
3
B、該四面體一定滿足:AB⊥CD
C、當(dāng)x=2
2
時,該四面體的表面積最大
D、當(dāng)x=2時,該四面體的體積最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)對任意n∈N*成立,令bn=an+1-an,且{bn}是等比數(shù)列.
(1)求實數(shù)k的值;
(2)求數(shù)列{an}的通項公式;
(3)求和:Sn=b1+2b2+3b3+…nbn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
100
+
y2
25
=1的上頂點為A,直線y=-4交橢圓E于點B,C(點B在點C的左側(cè)),點P在橢圓E上.
(Ⅰ)求以原點O為頂點,橢圓的右焦點為焦點的拋物線的方程;
(Ⅱ)求以原點O為圓心,與直線AB相切的圓的方程;
(Ⅲ)若四邊形ABCP為梯形,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于兩條不同的直線l,m兩個不重合的平面α,β的說法,正確的是( 。
A、若l?α且α⊥β,則l⊥β
B、若l⊥β且m⊥β,則l∥m
C、若l⊥β且α⊥β,則l∥α
D、若α∩β=m且l⊥m,則l⊥α

查看答案和解析>>

同步練習(xí)冊答案