某汽車城銷售某種型號的汽車,每輛進(jìn)貨價為25萬元,市場調(diào)研表明:當(dāng)銷售價為流程圖的輸出結(jié)果萬元時,平均每周能售出8輛,而當(dāng)銷售價每降低0.5萬元時,平均每周能多售出4輛.如果設(shè)每輛汽車降價萬元,每輛汽車的銷售利潤為萬元.(銷售利潤銷售價進(jìn)貨價)

   (1)求的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫出的取值范圍;

   (2)假設(shè)這種汽車平均每周的銷售利潤為萬元,試寫出之間的函數(shù)關(guān)系式;

   (3)當(dāng)每輛汽車的定價為多少萬元時,平均每周的銷售利潤最大?最大利潤是多少?

,, 50萬


解析:

1)由流程圖,可得:p=29,

所以,,  即

(2)

所以z與x之間的函數(shù)關(guān)系式為:

(3)

當(dāng)時, 

當(dāng)定價為萬元時,有最大利潤,最大利潤為50萬元.

   或:當(dāng) 

 

當(dāng)定價為萬元時,有最大利潤,最大利潤為50萬

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某汽車城銷售某種型號的汽車,每輛進(jìn)貨價為25萬元,市場調(diào)研表明:當(dāng)銷售價為流程圖的輸出結(jié)果p萬元時,平均每周能售出8輛,而當(dāng)銷售價每降低1萬元時,平均每周能多售出8輛.如果設(shè)每輛汽車降價x萬元,每輛汽車的銷售利潤為y萬元.(銷售利潤=銷售價-進(jìn)貨價)
(1)求y與x的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫出x的取值范圍;
(2)假設(shè)這種汽車平均每周的銷售利潤為z萬元,試寫出z與x之間的函數(shù)關(guān)系式;
(3)當(dāng)每輛汽車的定價為多少萬元時,平均每周的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案