【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環(huán)保知識競賽.

(1)設(shè)事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;

(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學期望.

【答案】(1);(2)見解析

【解析】

1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可

1)因為學生總數(shù)為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3.

所以.

2的可能取值為0,1,2,3,

,

,

,

的分布列為

0

1

2

3

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中國國際智能產(chǎn)業(yè)博覽會(智博會)每年在重慶市舉辦一屆,每年參加服務(wù)的志愿者分“嘉賓”、“法醫(yī)”等若干小組年底,來自重慶大學、西南大學、重慶醫(yī)科大學、西南政法大學的500名學生在重慶科技館多功能廳參加了“志愿者培訓”,如圖是四所大學參加培訓人數(shù)的不完整條形統(tǒng)計圖,現(xiàn)用分層抽樣的方法從中抽出50人作為2019年中國國際智博會服務(wù)的志愿者.

(1)若“嘉賓”小組需要2名志愿者,求這2人分別來自不同大學的概率(結(jié)果用分數(shù)表示)

(2)若“法醫(yī)”小組的3名志愿者只能從重慶醫(yī)科大學或西南政法大學抽出,用表示抽出志愿者來自重慶醫(yī)科大學的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={12,34}和集合B={1,2,3,,n},其中n≥5,.從集合A中任取三個不同的元素,其中最小的元素用S表示;從集合B中任取三個不同的元素,其中最大的元素用T表示.記XTS.

(1)當n5時,求隨機變量X的概率分布和數(shù)學期望;

(2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,EA⊥平面ABCD,四邊形ABCD為等腰梯形,,且,AD=AE=1,∠ABC=60°,EF=AC,且EFAC.

(Ⅰ)證明:AB⊥CF;

(Ⅱ)求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進行問卷調(diào)查.假設(shè)該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機構(gòu)對其中的500名顧客進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)若,求的最小值;

(2)若,求的單調(diào)區(qū)間;

(3)試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)若存在,使得恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln+ax﹣1(a≠0).

(I)求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)已知g(x)+xf(x)=﹣x,若函數(shù)g(x)有兩個極值點x1,x2(x1<x2),求證:g(x1)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計學中將個數(shù)的和記作

1)設(shè),求;

2)是否存在互不相等的非負整數(shù),,使得成立,若存在,請寫出推理的過程;若不存在請證明;

3)設(shè)是不同的正實數(shù),,對任意的,都有,判斷是否為一個等比數(shù)列,請說明理由.

查看答案和解析>>

同步練習冊答案