在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-)=1,M,N分別為C與x軸,y軸的交點(diǎn).
(1)寫(xiě)出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo).
(2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十四選修4-2第一節(jié)練習(xí)卷(解析版) 題型:解答題
求函數(shù)y=x2在矩陣M=變換作用下的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十二第十章第九節(jié)練習(xí)卷(解析版) 題型:填空題
某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷.假定該畢業(yè)生得到甲公司面試的概率為,得到乙、丙兩公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=,則隨機(jī)變量X的數(shù)學(xué)期望E(X)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:解答題
某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組 數(shù) | 分 組 | 低碳族的人數(shù) | 占本組的頻率 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | p |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | a | 0.4 |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55] | 15 | 0.3 |
(1)補(bǔ)全頻率分布直方圖并求n,a,p的值.
(2)為調(diào)查該地區(qū)的年齡與生活習(xí)慣和是否符合低碳觀念有無(wú)關(guān)系,調(diào)查組按40歲以下為青年,40歲以上(含40歲)為老年分成兩組,請(qǐng)你先完成下面2×2列聯(lián)表,并回答是否有99%的把握認(rèn)為該地區(qū)的生活習(xí)慣是否符合低碳觀念與人的年齡有關(guān).
參考公式:χ2=
P(χ2≥x0) | 0.050 | 0.010 | 0.001 |
x0 | 3.841 | 6.635 | 10.828 |
年齡組
是否低碳族 | 青 年 | 老 年 | 總 計(jì) |
低碳族 |
|
|
|
非低碳族 |
|
|
|
總計(jì) |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:選擇題
在調(diào)查學(xué)生數(shù)學(xué)成績(jī)與物理成績(jī)之間的關(guān)系時(shí),得到如下數(shù)據(jù)(人數(shù)):
| 物理 成績(jī)好 | 物理 成績(jī)不好 | 合計(jì) |
數(shù)學(xué)成績(jī)好 | 62 | 23 | 85 |
數(shù)學(xué)成績(jī)不好 | 28 | 22 | 50 |
合計(jì) | 90 | 45 | 135 |
那么有把握認(rèn)為數(shù)學(xué)成績(jī)與物理成績(jī)之間有關(guān)的百分比為( )
(A)25% (B)75% (C)95% (D)99%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十七選修4-4第一節(jié)練習(xí)卷(解析版) 題型:解答題
已知曲線C:ρsin(θ+)=,曲線P:ρ2-4ρcosθ+3=0,
(1)求曲線C,P的直角坐標(biāo)方程.
(2)設(shè)曲線C和曲線P的交點(diǎn)為A,B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:解答題
某市職教中心組織廚師技能大賽,大賽依次設(shè)基本功(初賽)、面點(diǎn)制作(復(fù)賽)、熱菜烹制(決賽)三個(gè)輪次的比賽,已知某選手通過(guò)初賽、復(fù)賽、決賽的概率分別是,,且各輪次通過(guò)與否相互獨(dú)立.
(1)設(shè)該選手參賽的輪次為ξ,求ξ的分布列.
(2)對(duì)于(1)中的ξ,設(shè)“函數(shù)f(x)=3sinπ(x∈R)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高中數(shù)學(xué)全國(guó)各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題
已知向量,,(為常數(shù), 是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸垂直,.
(Ⅰ)求的值及的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù) (為正實(shí)數(shù)),若對(duì)于任意,總存在, 使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年廣東省廣州市畢業(yè)班綜合測(cè)試一理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的圖象經(jīng)過(guò)點(diǎn).
(1)求實(shí)數(shù)的值;
(2)設(shè),求函數(shù)的最小正周期與單調(diào)遞增區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com