精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
如圖所示,△是正三角形,都垂直于平面,且,的中點.

(1)求證:∥平面;
(2)求三棱錐的體積.
(1)只需證明;(2)。

試題分析:(1)設的中點,連,則
--------------2分
又  
,即四邊形為平行四邊形.------------4分
 又平面
∥平面---------------------------------------6分
注:若學生用面面平行的性質解答,即證平面∥平面,按相應步驟給分.

(2)∵
平面,知
平面  由(1)知平面
--------------------------------------------------8分

--------------------12分
點評:立體幾何中證明線面平行或面面平行都可轉化為 線線平行,而證明線線平行一般有以下的一些方法: (1) 通過“平移”。 (2) 利用三角形中位線的性質。 (3) 利用平行四邊形的性質。 (4) 利用對應線段成比例。 (5) 利用面面平行,等等。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題12分)如圖,平面,點上,,四邊形為直角梯形,,,

(1)求證:平面;
(2)求二面角的余弦值;
(3)直線上是否存在點,使∥平面,若存在,求出點;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在組合體中,ABCD—A1B1C1D1是一個長方體,P—ABCD是一個四棱錐.AB=2,BC=3,點P平面CC1D1D,且PC=PD=

(1)證明:PD平面PBC;
(2)求PA與平面ABCD所成的角的正切值;
(3)若,當a為何值時,PC//平面

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在平行四邊形中,,,將沿折起,使

(1)求證:平面; 
(2)求平面和平面夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在正三棱錐中,分別是的中點,有下列三個論斷:
;②//平面;③平面,
其中正確論斷的個數為 (   )
A.3個     B.2個C.1個D.0個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,三棱柱中,平面,,的中點.

(1)求證:∥平面;
(2)求二面角的余弦值;
(3)設的中點為,問:在矩形內是否存在點,使得平面.若存在,求出點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設m、n是兩條不同的直線,是三個不同的平面,給出下列四個命題:
①若,則   ②若,,,則
③若,,則  ④若, ,則
其中正確命題的序號是 (     )
A.①②B.②③C.③④D.①②③④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)如圖所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點.

(1)求的長; (2)求cos< >的值;  (3)求證:A1B⊥C1M.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,在空間四邊形ABCD中,點E、H分別是邊AB、AD的中點,F、G分別是邊BC、CD上的點,且,則(  )

(A)EF與GH互相平行
(B)EF與GH異面
(C)EF與GH的交點M可能在直線AC上,也可能不在直線AC上
(D)EF與GH的交點M一定在直線AC上

查看答案和解析>>

同步練習冊答案