【題目】某上市股票在30天內(nèi)每股的交易價(jià)格P(元)與時(shí)間t(天)組成有序數(shù)對(duì)(t,P),點(diǎn)(t,P)落在下圖中的兩條線段上,該股票在30天內(nèi)(包括30天)的日交易量Q(萬股)與時(shí)間t(天)的部分?jǐn)?shù)據(jù)如下表所示.
第t天 | 4 | 10 | 16 | 22 |
Q(萬股) | 36 | 30 | 24 | 18 |
(1)根據(jù)提供的圖象,寫出該種股票每股交易價(jià)格P(元)與時(shí)間t(天)所滿足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時(shí)間t(天)的一次函數(shù)關(guān)系式;
(3)在(2)的結(jié)論下,用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾日交易額最大,最大值為多少?
【答案】
(1)解:
(2)解:設(shè)Q=at+b(a,b為常數(shù)),將(4,36)與(10,30)的坐標(biāo)代入,
得 .
日交易量Q(萬股)與時(shí)間t(天)的一次函數(shù)關(guān)系式為Q=40﹣t,0<t≤30,t∈N*.
(3)解:由(1)(2)可得
即
當(dāng)0<t≤20時(shí),當(dāng)t=15時(shí),ymax=125;
當(dāng) 上是減函數(shù),y<y(20)<y(15)=125.
所以,第15日交易額最大,最大值為125萬元.
【解析】(1)根據(jù)圖象可知此函數(shù)為分段函數(shù),在(0,20]和(20,30]兩個(gè)區(qū)間利用待定系數(shù)法分別求出一次函數(shù)關(guān)系式聯(lián)立可得P的解析式;(2)因?yàn)镼與t成一次函數(shù)關(guān)系,根據(jù)表格中的數(shù)據(jù),取出兩組即可確定出Q的解析式;(3)根據(jù)股票日交易額=交易量×每股較易價(jià)格可知y=PQ,可得y的解析式,分別在各段上利用二次函數(shù)求最值的方法求出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是AB=2,BC= 的矩形,△PAB是等邊三角形,側(cè)面PAB⊥底面ABCD
(Ⅰ)證明:BC⊥面PAB
(Ⅱ)求側(cè)棱PC與底面ABCD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:關(guān)于x的不等式|x﹣2|+|x+2|>m的解集是R; q:關(guān)于x的不等式x2+mx+4>0的解集是R.則p成立是q成立的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.即不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥側(cè)面BB1CC1 .
(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1(要求說明理由).
(3)在(2)的條件下,若AB= ,求二面角A﹣EB1﹣A1的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)的值;
(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)?/span>與兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)若在區(qū)間上為增函數(shù),求的取值范圍;
(Ⅱ)當(dāng)時(shí),證明:;
(Ⅲ)當(dāng)時(shí),試判斷方程是否有實(shí)數(shù)解,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(I) 討論函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為3,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com