【題目】若異面直線a、b所成的角為60°,則過空間一點(diǎn)P且與a、b所成的角都為60°的直線有條.

【答案】3
【解析】解:先將異面直線a,b平移到點(diǎn)P,則∠BPE=60°,∠EPD=120°,
且∠BPE的角平分線與a和b的所成角為30°,
而∠EPD的角平分線與a和b的所成角為60°
∵60°>30°,
∴當(dāng)使直線在面BPE的射影為∠BPE的角平分線時(shí)存在2條滿足條件,當(dāng)直線為∠EPD的角平分線時(shí)存在1條滿足條件,
∴直線與a,b所成的角相等且等于60°有且只有3條,
所以答案是:3.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用空間中直線與平面之間的位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項(xiàng)質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取件產(chǎn)品作為樣本,測出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表是甲流水線樣本的頻數(shù)分布表,圖是乙流水線樣本的頻率分布直方圖.

:甲流水線樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

頻數(shù)

:乙流水線樣本頻率分布直方圖

(Ⅰ)根據(jù)圖,估計(jì)乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù).

(Ⅱ)若將頻率視為概率,某個(gè)月內(nèi)甲,乙兩條流水線均生產(chǎn)了件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件.

(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?

甲生產(chǎn)線

乙生產(chǎn)線

合計(jì)

合格品

不合格品

合計(jì)

附: (其中樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=60°,D是BC上一點(diǎn),AB=31,BD=20,AD=21.

(1)求cos∠B的值;
(2)求sin∠BAC的值和邊BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 =1(a>b>0)經(jīng)過點(diǎn)(0, ),離心率為 ,左右焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l:y=﹣ x+m與橢圓交于A、B兩點(diǎn),與以F1F2為直徑的圓交于C、D兩點(diǎn),且滿足 = ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|x2+2x﹣3>0},集合B={x|x2﹣2ax﹣1≤0,a>0}.若A∩B中恰含有一個(gè)整數(shù),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某上市股票在30天內(nèi)每股的交易價(jià)格P(元)與時(shí)間t(天)組成有序數(shù)對(t,P),點(diǎn)(t,P)落在下圖中的兩條線段上,該股票在30天內(nèi)(包括30天)的日交易量Q(萬股)與時(shí)間t(天)的部分?jǐn)?shù)據(jù)如下表所示.

第t天

4

10

16

22

Q(萬股)

36

30

24

18


(1)根據(jù)提供的圖象,寫出該種股票每股交易價(jià)格P(元)與時(shí)間t(天)所滿足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時(shí)間t(天)的一次函數(shù)關(guān)系式;
(3)在(2)的結(jié)論下,用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾日交易額最大,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)xm=0},

若(UA)∩B,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(0)=﹣1,對任意x∈R都有f(x)≥x﹣1,且f(﹣ +x)=f(﹣ ﹣x).
(1)求函數(shù)f(x)的解析式;
(2)是否存在實(shí)數(shù)a,使函數(shù)g(x)=log [f(a)]x在(﹣∞,+∞)上為減函數(shù)?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,h(x)=2f(x)﹣ax﹣b.
(Ⅰ)判斷f(x)的奇偶性,并說明理由;
(Ⅱ)若f(x)為奇函數(shù),且h(x)在[﹣1,1]有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案