【題目】若的展開式中第6項的系數最大,則不含的項等于__________.
【答案】210
【解析】
如果是奇數,那么是中間兩項的二項式系數最大,如果是偶數,那么最中間項的二
項式系數最大,由此可確定的值,進而利用展開式,即可求得常數項.
如果是奇數,那么是中間兩項的二項式系數最大,如果是偶數,那么中間項的二
項式系數最大.
當n=10時,展開式中只有第六項的二項式系數最大,
展開式的通項為,令,可得
展開式中的常數項等于.
當n=9時,展開式有10項,中間第5項和第6項的二項式系數最大,
此時展開式的通項為,令27-5r=0,沒有整數解.
當n=11時,展開式有12項,中間的第6項和第7項的二項式系數最大,
此時展開式的通項為,令33-5r=0,沒有整數解.
故答案為:210.
科目:高中數學 來源: 題型:
【題目】已知圓: 與定點, 為圓上的動點,點在線段上,且滿足.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)設曲線與軸正半軸交點為,不經過點的直線與曲線相交于不同兩點, ,若.證明:直線過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,以O為圓心的圓與直線相切.
(1)求圓O的方程.
(2)直線與圓O交于A,B兩點,在圓O上是否存在一點M,使得四邊形為菱形?若存在,求出此時直線l的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩焦點在軸上,且短軸的兩個頂點與其中一個焦點的連線構成斜邊為的等腰直角三角形.
(1)求橢圓的方程;
(2)動直線交橢圓于兩點,試問:在坐標平面上是否存在一個定點,使得以線段為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場為了吸引大家,規(guī)定:購買一定價值的商品可以獲得一張獎券,獎券上有一個兌獎號碼,可以分別參加兩次抽獎方式相同的兌獎活動,已知甲有一張該商場的獎券,且每次兌獎活動的中獎概率都是0.05,求:
(1)甲中兩次獎的概率;
(2)甲中一次獎的概率;
(3)甲不中獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的對稱軸為坐標軸,頂點是坐標原點,準線方程為,直線與拋物線相交于不同的, 兩點.
(1)求拋物線的標準方程;
(2)如果直線過拋物線的焦點,求的值;
(3)如果,直線是否過一定點,若過一定點,求出該定點;若不過一定點,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com