【題目】等腰三角形的周長是18,底邊長y是一腰長x的函數(shù),則( )
A.y=9-x(0<x≤9)
B.y=9-x(0<x<9)
C.y=18-2x(4.5≤x≤9)
D.y=18-2x(4.5<x<9)

【答案】D
【解析】根據(jù)等腰三角形的周長公式列出函數(shù)解析式.
∵2x+y=18,∴y=18-2x,則18-2x>0,∴x<9.由構成三角形的條件(兩邊之和大于第三邊)可知2x>18-2x,得x>4.5,
∴函數(shù)的定義域為{x|4.5<x<9}.
故答案為:D.
實際問題中,根據(jù)等腰三角形的周長公式列出函數(shù)解析式,要注意函數(shù)的定義域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有10名員工,他們某年的收入如下表:

員工編號

1

2

3

4

5

6

7

8

9

10

年薪(萬元

3

3.5

4

5

5.5

6.5

7

7.5

8

50

(1)從該單位中任取2人,此2人中年薪收入高于5萬的人數(shù)記為,求的分布列和期望;

(2)已知員工年薪收入與工作所限成正相關關系,某員工工作第一年至第四年的年薪如下表:

工作年限

1

2

3

4

年薪(萬元

3.0

4.2

5.6

7.2

預測該員工第五年的年薪為多少?

附:線性回歸方程中系數(shù)計算公式和參考數(shù)據(jù)分別為:

,,其中為樣本均值,,,(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a1,d為實數(shù),首項為a1,公差為d的等差數(shù)列{an}的前n項和為Sn,滿足S5S6150

1)若S55,求S6a1

2)求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足:,則稱函數(shù)

(1)試判斷是否為函數(shù),并說明理由;

(2)若函數(shù),

)求證:的零點在上;

(ii)求證:對任意,存在,使上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地空氣中出現(xiàn)污染,須灑一定量的去污劑進行處理.據(jù)測,每噴灑個單位的去污劑,空氣中釋放的濃度 單位:毫克/立方米隨著時間單位:天變化的函數(shù)關系式,近似為

,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次放的去污劑在相應時刻所釋放的濃度之和. 由實驗知,當空氣中去污劑的濃度不低于/立方米時,它才能起到去污作用.

(1)若一次個單位的去污劑,則去污時間可達幾天?

(2)若第一次噴灑位的去污劑,天后再嗩個單位的去污劑,要使來的天中能夠持續(xù)有效去污,試求的最小值精確到,參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,分別是棱的中點,且平面.

1)求證:平面;

2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化工廠近期要生產(chǎn)一批化工試劑,經(jīng)市場調査得知,生產(chǎn)這批試劑廠家的生產(chǎn)成本有以下三個部分:生產(chǎn)單位試劑需要料費; 支付所有職工的工資總額元的基本工資和每生產(chǎn)單位試劑補貼所有職工元組成; 后續(xù)保養(yǎng)的平均費用是每單試劑的總產(chǎn)量為單位,.

(1)把生產(chǎn)每單位試劑的成本表示為的函數(shù)關,并求出最小值;

(2)產(chǎn)品全部出,據(jù)測算銷售關于產(chǎn)單位數(shù)關系,試問:當產(chǎn)量為多少時生產(chǎn)這批試的利潤最高?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l交拋物線y2=2xA、B兩點,且OAOB,則直線l過定點(  )

A. (1,0) B. (2,0) C. (3,0) D. (4,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={1,3,a},B={1,a2-a+1},且AB,則a的值為

查看答案和解析>>

同步練習冊答案