函數(shù)y=f(x),x∈D,若存在常數(shù)C,對(duì)任意的x1∈D,存在唯一的x2∈D使得=C,則稱函數(shù)f(x)在D上的幾何平均數(shù)為C.已知f(x)=x3,x∈[1,2],則函數(shù)f(x)=x3在[1,2]上的幾何平均數(shù)為( )
A. B.2
C.4 D.2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD是正方形,E是AD上一點(diǎn),且AE=AD,N是AB的中點(diǎn),
NF⊥CE于F,求證:FN2=EF·FC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|-2≤x≤1}.
(1) 求a的值,
(2) 若≤k恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知在遞增等差數(shù)列{an}中,a1=2,a1,a3,a7成等比數(shù)列,{bn}的前n項(xiàng)和為Sn,且Sn=2n+1-2.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=abn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知e1,e2是兩個(gè)單位向量,其夾角為θ,若向量m=2e1+3e2,則|m|=1的充要條件是( )
A.θ=π B.θ=
C.θ= D.θ=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)=ax+b(0≤x≤1),則a+2b>0是f(x)>0在[0,1]上恒成立的________條件.(填充分但不必要,必要但不充分,充要,既不充分也不必要)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)=x3-ax2-ax,g(x)=2x2+4x+c.
(1)試問函數(shù)f(x)能否在x=-1時(shí)取得極值?說明理由;
(2)若a=-1,當(dāng)x∈[-3,4]時(shí),函數(shù)f(x)與g(x)的圖象有兩個(gè)公共點(diǎn),求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)=sin+
cos ωx(其中ω>0),且函數(shù)f(x)的圖象的兩條相鄰的對(duì)稱軸間的距離為
.
(1)求ω的值;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAB⊥平面ABCD,PA⊥PB, BP=BC,E為PC的中點(diǎn).
(1)求證:AP∥平面BDE;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com