已知過定點M(1,-1)的直線與拋物線y2=2x交于A,B兩點,且OA⊥OB,O為坐標(biāo)原點,則該直線的方程為(  )
A、y=-x
B、y=2x-3
C、y=3x-4
D、y=x-2
考點:拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)直線AB的方程為:x-1=m(y+1),A(x1,y1),B(x2,y2).與拋物線的方程聯(lián)立可得根與系數(shù)的關(guān)系,再利用向量垂直與數(shù)量積的關(guān)系即可得出.
解答: 解:設(shè)直線AB的方程為:x-1=m(y+1),A(x1,y1),B(x2,y2).
聯(lián)立
y2=2x
x-1=m(y+1)
,化為y2-2my-2m-2=0.
△>0,即4m2-4(-2m-2)>0,化為m2+2m+2>0(*).
∴y1+y2=2m,y1y2=-2m-2.
∴x1x2=(my1+m+1)(my2+m+1)=m2y1y2+m(m+1)(y1+y2)+(m+1)2
=(-2m-2)m2+2m×m(m+1)+(m+1)2=m2+2m+1.
∵OA⊥OB,
OA
OB
=x1x2+y1y2=0,
∴m2+2m+1-2m-2=0.
化為m2=1,
解得m=±1.滿足(*)
但是當(dāng)m=-1直線方程為x+y=0時,與拋物線的有關(guān)交點為原點,不滿足OA⊥OB,應(yīng)該舍去.
∴該直線的方程為x-1=y+1,化為y=x-2.
故選:D.
點評:本題考查了直線與拋物線相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式2x2-4x22ax+a對一切實數(shù)x都成立,則實數(shù)a的取值范圍是( 。
A、(1,4)
B、(-4,-1)
C、(-∞,-4)∪(-1,+∞)
D、(-∞,1)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動點P在以點C為圓心,且與直線BD相切的圓內(nèi)運動,設(shè)
AP
AD
AB
(α,β∈R),則α+β的取值范圍是( 。
A、(0,
4
3
]
B、[
4
3
,
5
3
]
C、(1,
4
3
D、(1,
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為矩形ABCD所在平面外一點,矩形對角線交點為O,M為PB的中點,給出五個結(jié)論:①OM∥PD;②OM∥平面PCD;③OM∥平面PDA;④OM∥平面PBA,⑤OM∥平面PCB.
其中正確的個數(shù)有( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知gn(x)+1=
n
k=1
xn
k2
(x∈R,n∈N*),則下列說法正確的是( 。
①gn(x)關(guān)于點(0,-1)成中心對稱.
②gn(x)在(0,+∞)單調(diào)遞增.
③當(dāng)n取遍N*中所有數(shù)時不可能存在c∈[
2
3
,1]使得gn(c)=0.
A、①②③B、②③C、①③D、②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,∠BAC=120°,AB=2,AC=1,D是邊BC上的一點(包括端點),則
AD
BC
的取值范圍是(  )
A、[1,2]
B、[0,1]
C、[0,2]
D、[-5,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)是偶函數(shù)的是( 。
A、y=(x+1)2
B、y=|x|•x
C、y=2x+2-x
D、y=
x
x2+sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點A(1,-1),B(-1,-3).
(Ⅰ) 求過A、B兩點的直線方程;
(Ⅱ) 求線段AB的垂直平分線l的直線方程;
(Ⅲ)若圓C經(jīng)過A、B兩點且圓心在直線x-y+1=0上,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2(a+1)x+2alnx+5.
(Ⅰ)若a=-1,求函數(shù)f(x)的極值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案