樹林的邊界是直線l(如圖所示),一只兔子在河邊喝水時發(fā)現(xiàn)了一只狼,兔子和狼分別位于l的垂線AC上的點A點B點處,AB=BC=a(a為正常數(shù)),若兔子沿AD方向以速度2μ向樹林逃跑,同時狼沿線段BM(M∈AD)方向以速度μ進行追擊(μ為正常數(shù)),若狼到達M處的時間不多于兔子到達M處的時間,狼就會吃掉兔子.
(1)求兔子被狼吃掉的點的區(qū)域面積S(a);
(2)若兔子要想不被狼吃掉,求θ(θ=∠DAC)的取值范圍.
(1)如圖建立坐標(biāo)系xOy,設(shè) A(0,2a),B(0,a),M(x,y),
BM
μ
AM
,得x2+(y-
2a
3
)2
4a2
9
.所以M在以(0,
2a
3
)
為圓心,半徑為
2a
3
的圓及其內(nèi)部.
所以,s(a)=
4a2
9
π
.-------(8分)
(2)設(shè)lAD:y=kx+2a(k≠0),由
|2a-
2a
3
|
1+k2
2a
3
⇒k∈(-
3
,0)∪(0,
3
)
,
可得 0<∠ADB<
π
3
,所以,θ∈(
π
6
,
π
2
)
.---------(6分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知圓O的直徑AB=5,C為圓周上一點,BC=4,過點C作圓O的切線l,過點Al的垂線AD,垂足為D,則CD      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求過點且與直線相切的圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是直線上一點,M,N分別是圓與圓上的點則的最大值為(    )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(選修4-1 幾何證明選講)
如圖,已知:C是以AB為直徑的半圓O上一點,
CH⊥AB于點H,直線AC與過B點的切線相交于
點D,E為CH中點,連接AE并延長交BD于點F,
直線CF交直線AB于點G.
(Ⅰ)求證:F是BD的中點;
(Ⅱ)求證:CG是⊙O的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓C:x2+y2-6x+8y=0的圓心坐標(biāo)為( 。
A.(3,4)B.(-3,4)C.(-3,-4)D.(3,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

圓心在拋物線x2=2y上,與直線2x+2y+3=0相切的圓中,求面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓2x2+y2=2的兩焦點為F1,F(xiàn)2,且B為短軸的一個端點,則△F1BF2的外接圓方程為( 。
A.(x-1)2+y2=4B.x2+y2=1C.x2+y2=4D.x2+(y-1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓(x-1)2+(y+3)2=2的圓心和半徑分別為( 。
A.(-1,3),2B.(1,-3),
2
C.(1,-3),2D.(-1,3),
2

查看答案和解析>>

同步練習(xí)冊答案