已知函數(shù)f(x)=
a
x
-1+lnx(a∈R)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0恒成立,試確定實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)先求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,從而求出單調(diào)區(qū)間,(2)a≤0時(shí),顯然不成立,a>0時(shí),若f(x)≥0恒成立,由(1)得:f(x)min=f(a)=lna≥0,解出即可.
解答: 解:(1)∵f′(x)=
x-a
x2

①a>0時(shí),
令f′(x)>0,解得:x>a,
令f′(x)<0,解得:0<x<a,
∴f(x)在(0,a)上遞減,在(a,+∞)上遞增,
②a≤0時(shí),f′x)>0,
∴f(x)在(0,+∞)上遞增;
(2)a≤0時(shí),顯然不成立,
a>0時(shí),若f(x)≥0恒成立,
由(1)得:f(x)min=f(a)=lna≥0,
∴a≥1.
點(diǎn)評(píng):本題考察了函數(shù)的單調(diào)性,函數(shù)的最值問(wèn)題,導(dǎo)數(shù)的應(yīng)用,滲透了分類(lèi)討論思想,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)y=
1
3
x3+
1
2
x2
+4x-7在點(diǎn)Q處的切線(xiàn)的傾斜角α滿(mǎn)足tanα=4,則此切線(xiàn)的方程為(  )
A、4x-y+7=0或4x-y-6
5
6
=0
B、4x-y-6
5
6
=0
C、4x-y-7=0或4x-y-6
5
6
=0
D、4x-y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x,y的不等式組
x≥1
x+y≤2
y≥ax
表示的區(qū)域?yàn)槿切危瑒t實(shí)數(shù)a的取值范圍是( 。
A、(-∞,1)
B、(0,1)
C、(-1,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式丨x-2丨+丨x-a丨<a的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=ax2-4x-1在﹙2,+∞﹚上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=-3x2-12x+1,x∈(-∞,-2),判斷該函數(shù)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿(mǎn)足:a2=4公比q=2,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=
4
3
bn-
2
3
an+
2
3
(n∈N*).
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)an和bn;
(2)設(shè)cn=
bn
an
(n∈n*),證明:
c1
c2
+
c2
c3
+…+
cn
cn+1
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列各函數(shù)的導(dǎo)函數(shù):
(1)f(x)=kx+
ax2+bx+c
;
(2)f(x)=k
ax+b
+l
cx+d

(3)f(x)=
(x-a)2+b2
+
(x-c)2+d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,C是以AB為直徑的圓O上異于A,B的點(diǎn),平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F(xiàn) 分別是PC,PB的中點(diǎn),記平面AEF與平面ABC的交線(xiàn)為直線(xiàn)l.
(Ⅰ)求證:直線(xiàn)l⊥平面PAC;
(Ⅱ)直線(xiàn)l上是否存在點(diǎn)Q,使直線(xiàn)PQ分別與平面AEF、直線(xiàn)EF所成的角互余?若存在,求出|AQ|的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案