【題目】以下三個關于圓錐曲線的命題中:

①設為兩個定點,為非零常數(shù),若,則動點的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點;

④已知拋物線,以過焦點的一條弦為直徑作圓,則此圓與準線相切,其中真命題為__________.(寫出所有真命題的序號)

【答案】②③④

【解析】

A、B為兩個定點,K為非零常數(shù),若|PA||PB|=K,當K=|AB|時,動點P的軌跡是兩條射線,故①錯誤;

方程2x2﹣5x+2=0的兩根為2,可分別作為橢圓和雙曲線的離心率,故②正確;

雙曲線=1的焦點坐標為(±,0),橢圓﹣y2=1的焦點坐標為(±,0),故③正確;

AB為過拋物線焦點F的弦,PAB中點,A、B、P在準線l上射影分別為M、N、Q,

AP+BP=AM+BN

PQ=AB,

∴以AB為直徑作圓則此圓與準線l相切,故④正確

故正確的命題有:②③④

故答案為:②③④

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機抽取人對共享產(chǎn)品對共享產(chǎn)品是否對日常生活有益進行了問卷調查,并對參與調查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:

(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系?

Ⅱ)現(xiàn)按照分層抽樣從認為共享產(chǎn)品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.

參考公式 .

臨界值表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在上的奇函數(shù),對,均有,已知當時, ,則下列結論正確的是( )

A. 的圖象關于對稱 B. 有最大值1

C. 上有5個零點 D. 時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為 (為參數(shù))

寫出直線的普通方程與曲線的直角坐標方程;

(2)設曲線經(jīng)過伸縮變換后得到曲線,設上任意一點,

的最小值,并求相應的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若存在使得成立,求實數(shù)的取值范圍;

(Ⅱ)求證:當時,在(1)的條件下, 成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的極值;

(2)當時,若對任意都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則下列結論正確的是(  )

A. 導函數(shù)為

B. 函數(shù)f(x)的圖象關于直線對稱

C. 函數(shù)f(x)在區(qū)間上是增函數(shù)

D. 函數(shù)f(x)的圖象可由函數(shù)y3cos 2x的圖象向右平移個單位長度得到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中, , , , 中點(如圖1).將沿折起到圖2中的位置,得到四棱錐.

(1)將沿折起的過程中, 平面是否成立?并證明你的結論;

(2)若,過的平面交于點,且的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)討論函數(shù)的單調性;

(2)證明:當時,函數(shù)有最小值.設的最小值為,求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案