【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的極值;

(2)當(dāng)時,若對任意都有,求實(shí)數(shù)的取值范圍.

【答案】(1) , (2)

【解析】

(1)把a=2代入,找出導(dǎo)函數(shù)為0的自變量,看在自變量左右兩側(cè)導(dǎo)函數(shù)的符號來求極值即可.

(2)先根據(jù)導(dǎo)函數(shù)的解析式確定函數(shù)f(x)的單調(diào)性,然后根據(jù)a的不同范圍進(jìn)行討論進(jìn)而確定其答案.

解:(1)當(dāng)時,

所以當(dāng)時,,為增函數(shù)

時,,為減函數(shù)

時,,為增函數(shù)

所以 ,

(2)

所以上單調(diào)遞增;在上單調(diào)遞減;

上單調(diào)遞增;

當(dāng)時,函數(shù)上單調(diào)遞增

所以函數(shù)上的最大值是

由題意得,解得:,

因?yàn)?/span>, 所以此時的值不存在

當(dāng)時,,此時上遞增,在上遞減

所以函數(shù)上的最大值是

由題意得,解得:

綜上的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,分別是棱,的中點(diǎn),點(diǎn)棱上,且,,.

(1)求證:平面;

(2)當(dāng)時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱, 平面 , .

1)證明:平面平面

2)若四棱柱的體積為,求該三棱柱的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合計(jì)

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下三個關(guān)于圓錐曲線的命題中:

①設(shè)為兩個定點(diǎn),為非零常數(shù),若,則動點(diǎn)的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點(diǎn);

④已知拋物線,以過焦點(diǎn)的一條弦為直徑作圓,則此圓與準(zhǔn)線相切,其中真命題為__________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程的不同實(shí)數(shù)根的個數(shù)為,則的所有可能值為( )

A. 3 B. 1或3 C. 3或5 D. 1或3或5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為, 上的動點(diǎn)到兩焦點(diǎn)的距離之和為4,當(dāng)點(diǎn)運(yùn)動到橢圓的上頂點(diǎn)時,直線恰與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左右頂點(diǎn)分別為,若交直線兩點(diǎn).問以為直徑的圓是否過定點(diǎn)?若過定點(diǎn),請求出該定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,過拋物線上一定點(diǎn),作兩條直線分別交拋物線于,

(1)求該拋物線上縱坐標(biāo)為的點(diǎn)到其焦點(diǎn)的距離;

(2)當(dāng)的斜率存在且傾斜角互補(bǔ)時,求的值,并證明直線的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)fx)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

同步練習(xí)冊答案